| |
| // g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out |
| // icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out |
| |
| #include <iostream> |
| #include <Eigen/Core> |
| #include <bench/BenchTimer.h> |
| |
| using namespace std; |
| using namespace Eigen; |
| |
| #ifndef SCALAR |
| // #define SCALAR std::complex<float> |
| #define SCALAR float |
| #endif |
| |
| typedef SCALAR Scalar; |
| typedef NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<RealScalar,Dynamic,Dynamic> A; |
| typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B; |
| typedef Matrix<Scalar,Dynamic,Dynamic> C; |
| typedef Matrix<RealScalar,Dynamic,Dynamic> M; |
| |
| #ifdef HAVE_BLAS |
| |
| extern "C" { |
| #include <Eigen/src/misc/blas.h> |
| } |
| |
| static float fone = 1; |
| static float fzero = 0; |
| static double done = 1; |
| static double szero = 0; |
| static std::complex<float> cfone = 1; |
| static std::complex<float> cfzero = 0; |
| static std::complex<double> cdone = 1; |
| static std::complex<double> cdzero = 0; |
| static char notrans = 'N'; |
| static char trans = 'T'; |
| static char nonunit = 'N'; |
| static char lower = 'L'; |
| static char right = 'R'; |
| static int intone = 1; |
| |
| void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) |
| { |
| int M = c.rows(); int N = c.cols(); int K = a.cols(); |
| int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); |
| |
| sgemm_(¬rans,¬rans,&M,&N,&K,&fone, |
| const_cast<float*>(a.data()),&lda, |
| const_cast<float*>(b.data()),&ldb,&fone, |
| c.data(),&ldc); |
| } |
| |
| EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) |
| { |
| int M = c.rows(); int N = c.cols(); int K = a.cols(); |
| int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); |
| |
| dgemm_(¬rans,¬rans,&M,&N,&K,&done, |
| const_cast<double*>(a.data()),&lda, |
| const_cast<double*>(b.data()),&ldb,&done, |
| c.data(),&ldc); |
| } |
| |
| void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) |
| { |
| int M = c.rows(); int N = c.cols(); int K = a.cols(); |
| int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); |
| |
| cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, |
| const_cast<float*>((const float*)a.data()),&lda, |
| const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone, |
| (float*)c.data(),&ldc); |
| } |
| |
| void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) |
| { |
| int M = c.rows(); int N = c.cols(); int K = a.cols(); |
| int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); |
| |
| zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, |
| const_cast<double*>((const double*)a.data()),&lda, |
| const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone, |
| (double*)c.data(),&ldc); |
| } |
| |
| |
| |
| #endif |
| |
| void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) |
| { |
| cr.noalias() += ar * br; |
| cr.noalias() -= ai * bi; |
| ci.noalias() += ar * bi; |
| ci.noalias() += ai * br; |
| } |
| |
| void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) |
| { |
| cr.noalias() += a * br; |
| ci.noalias() += a * bi; |
| } |
| |
| void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) |
| { |
| cr.noalias() += ar * b; |
| ci.noalias() += ai * b; |
| } |
| |
| template<typename A, typename B, typename C> |
| EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) |
| { |
| c.noalias() += a * b; |
| } |
| |
| int main(int argc, char ** argv) |
| { |
| std::ptrdiff_t l1 = internal::queryL1CacheSize(); |
| std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); |
| std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n"; |
| std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n"; |
| typedef internal::gebp_traits<Scalar,Scalar> Traits; |
| std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; |
| |
| int rep = 1; // number of repetitions per try |
| int tries = 2; // number of tries, we keep the best |
| |
| int s = 2048; |
| int cache_size = -1; |
| |
| bool need_help = false; |
| for (int i=1; i<argc; ++i) |
| { |
| if(argv[i][0]=='s') |
| s = atoi(argv[i]+1); |
| else if(argv[i][0]=='c') |
| cache_size = atoi(argv[i]+1); |
| else if(argv[i][0]=='t') |
| tries = atoi(argv[i]+1); |
| else if(argv[i][0]=='p') |
| rep = atoi(argv[i]+1); |
| else |
| need_help = true; |
| } |
| |
| if(need_help) |
| { |
| std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n"; |
| return 1; |
| } |
| |
| if(cache_size>0) |
| setCpuCacheSizes(cache_size,96*cache_size); |
| |
| int m = s; |
| int n = s; |
| int p = s; |
| A a(m,p); a.setRandom(); |
| B b(p,n); b.setRandom(); |
| C c(m,n); c.setOnes(); |
| C rc = c; |
| |
| std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; |
| std::ptrdiff_t mc(m), nc(n), kc(p); |
| internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); |
| std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n"; |
| |
| C r = c; |
| |
| // check the parallel product is correct |
| #if defined EIGEN_HAS_OPENMP |
| int procs = omp_get_max_threads(); |
| if(procs>1) |
| { |
| #ifdef HAVE_BLAS |
| blas_gemm(a,b,r); |
| #else |
| omp_set_num_threads(1); |
| r.noalias() += a * b; |
| omp_set_num_threads(procs); |
| #endif |
| c.noalias() += a * b; |
| if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; |
| } |
| #elif defined HAVE_BLAS |
| blas_gemm(a,b,r); |
| c.noalias() += a * b; |
| if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; |
| #else |
| gemm(a,b,c); |
| r.noalias() += a.cast<Scalar>() * b.cast<Scalar>(); |
| if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; |
| #endif |
| |
| #ifdef HAVE_BLAS |
| BenchTimer tblas; |
| c = rc; |
| BENCH(tblas, tries, rep, blas_gemm(a,b,c)); |
| std::cout << "blas cpu " << tblas.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n"; |
| std::cout << "blas real " << tblas.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; |
| #endif |
| |
| BenchTimer tmt; |
| c = rc; |
| BENCH(tmt, tries, rep, gemm(a,b,c)); |
| std::cout << "eigen cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; |
| std::cout << "eigen real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; |
| |
| #ifdef EIGEN_HAS_OPENMP |
| if(procs>1) |
| { |
| BenchTimer tmono; |
| omp_set_num_threads(1); |
| Eigen::internal::setNbThreads(1); |
| c = rc; |
| BENCH(tmono, tries, rep, gemm(a,b,c)); |
| std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n"; |
| std::cout << "eigen mono real " << tmono.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; |
| std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; |
| } |
| #endif |
| |
| #ifdef DECOUPLED |
| if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) |
| { |
| M ar(m,p); ar.setRandom(); |
| M ai(m,p); ai.setRandom(); |
| M br(p,n); br.setRandom(); |
| M bi(p,n); bi.setRandom(); |
| M cr(m,n); cr.setRandom(); |
| M ci(m,n); ci.setRandom(); |
| |
| BenchTimer t; |
| BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci)); |
| std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; |
| std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; |
| } |
| if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) |
| { |
| M a(m,p); a.setRandom(); |
| M br(p,n); br.setRandom(); |
| M bi(p,n); bi.setRandom(); |
| M cr(m,n); cr.setRandom(); |
| M ci(m,n); ci.setRandom(); |
| |
| BenchTimer t; |
| BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci)); |
| std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; |
| std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; |
| } |
| if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) |
| { |
| M ar(m,p); ar.setRandom(); |
| M ai(m,p); ai.setRandom(); |
| M b(p,n); b.setRandom(); |
| M cr(m,n); cr.setRandom(); |
| M ci(m,n); ci.setRandom(); |
| |
| BenchTimer t; |
| BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci)); |
| std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; |
| std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; |
| } |
| #endif |
| |
| return 0; |
| } |
| |