| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/SVD> |
| |
| template<typename MatrixType> void svd(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| SVD.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| MatrixType a = MatrixType::Random(rows,cols); |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b = |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1); |
| Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1); |
| |
| RealScalar largerEps = test_precision<RealScalar>(); |
| if (ei_is_same_type<RealScalar,float>::ret) |
| largerEps = 1e-3f; |
| |
| SVD<MatrixType> svd(a); |
| MatrixType sigma = MatrixType::Zero(rows,cols); |
| MatrixType matU = MatrixType::Zero(rows,rows); |
| sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal(); |
| matU.block(0,0,rows,cols) = svd.matrixU(); |
| |
| VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose()); |
| |
| if (rows==cols) |
| { |
| if (ei_is_same_type<RealScalar,float>::ret) |
| { |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| a += a * a.adjoint() + a1 * a1.adjoint(); |
| } |
| SVD<MatrixType> svd(a); |
| svd.solve(b, &x); |
| VERIFY_IS_APPROX(a * x,b); |
| } |
| } |
| |
| void test_svd() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( svd(Matrix3f()) ); |
| CALL_SUBTEST( svd(Matrix4d()) ); |
| CALL_SUBTEST( svd(MatrixXf(7,7)) ); |
| CALL_SUBTEST( svd(MatrixXd(14,7)) ); |
| // complex are not implemented yet |
| // CALL_SUBTEST( svd(MatrixXcd(6,6)) ); |
| // CALL_SUBTEST( svd(MatrixXcf(3,3)) ); |
| } |
| } |