| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include "unsupported/Eigen/SpecialFunctions" |
| #include <typeinfo> |
| |
| #if defined __GNUC__ && __GNUC__>=6 |
| #pragma GCC diagnostic ignored "-Wignored-attributes" |
| #endif |
| // using namespace Eigen; |
| |
| #ifdef EIGEN_VECTORIZE_SSE |
| const bool g_vectorize_sse = true; |
| #else |
| const bool g_vectorize_sse = false; |
| #endif |
| |
| bool g_first_pass = true; |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template<typename T> T negate(const T& x) { return -x; } |
| |
| template<typename T> |
| Map<const Array<unsigned char,sizeof(T),1> > |
| bits(const T& x) { |
| return Map<const Array<unsigned char,sizeof(T),1> >(reinterpret_cast<const unsigned char *>(&x)); |
| } |
| |
| // The following implement bitwise operations on floating point types |
| template<typename T,typename Bits,typename Func> |
| T apply_bit_op(Bits a, Bits b, Func f) { |
| Array<unsigned char,sizeof(T),1> data; |
| T res; |
| for(Index i = 0; i < data.size(); ++i) |
| data[i] = f(a[i], b[i]); |
| std::memcpy(&res, &data, sizeof(T)); |
| return res; |
| } |
| |
| #define EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,T) \ |
| template<> T EIGEN_CAT(p,OP)(const T& a,const T& b) { \ |
| return apply_bit_op<T>(bits(a),bits(b),FUNC); \ |
| } |
| |
| #define EIGEN_TEST_MAKE_BITWISE(OP,FUNC) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,float) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,double) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,half) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<float>) \ |
| EIGEN_TEST_MAKE_BITWISE2(OP,FUNC,std::complex<double>) |
| |
| EIGEN_TEST_MAKE_BITWISE(xor,std::bit_xor<unsigned char>()) |
| EIGEN_TEST_MAKE_BITWISE(and,std::bit_and<unsigned char>()) |
| EIGEN_TEST_MAKE_BITWISE(or, std::bit_or<unsigned char>()) |
| struct bit_andnot{ |
| template<typename T> T |
| operator()(T a, T b) const { return a & (~b); } |
| }; |
| EIGEN_TEST_MAKE_BITWISE(andnot, bit_andnot()) |
| template<typename T> |
| bool biteq(T a, T b) { |
| return (bits(a) == bits(b)).all(); |
| } |
| |
| } |
| } |
| |
| // NOTE: we disable inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU. |
| template<typename Scalar> EIGEN_DONT_INLINE |
| bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) |
| { |
| return internal::isMuchSmallerThan(a-b, refvalue); |
| } |
| |
| template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) |
| { |
| for (int i=0; i<size; ++i) |
| { |
| if (!isApproxAbs(a[i],b[i],refvalue)) |
| { |
| std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) |
| { |
| for (int i=0; i<size; ++i) |
| { |
| if ((!internal::biteq(a[i],b[i])) && a[i]!=b[i] && !internal::isApprox(a[i],b[i])) |
| { |
| std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #define CHECK_CWISE1(REFOP, POP) { \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i]); \ |
| internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| template<bool Cond,typename Packet> |
| struct packet_helper |
| { |
| template<typename T> |
| inline Packet load(const T* from) const { return internal::pload<Packet>(from); } |
| |
| template<typename T> |
| inline Packet loadu(const T* from) const { return internal::ploadu<Packet>(from); } |
| |
| template<typename T> |
| inline Packet load(const T* from, unsigned long long umask) const { return internal::ploadu<Packet>(from, umask); } |
| |
| template<typename T> |
| inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } |
| |
| template<typename T> |
| inline void store(T* to, const Packet& x, unsigned long long umask) const { internal::pstoreu(to, x, umask); } |
| }; |
| |
| template<typename Packet> |
| struct packet_helper<false,Packet> |
| { |
| template<typename T> |
| inline T load(const T* from) const { return *from; } |
| |
| template<typename T> |
| inline T loadu(const T* from) const { return *from; } |
| |
| template<typename T> |
| inline T load(const T* from, unsigned long long) const { return *from; } |
| |
| template<typename T> |
| inline void store(T* to, const T& x) const { *to = x; } |
| |
| template<typename T> |
| inline void store(T* to, const T& x, unsigned long long) const { *to = x; } |
| }; |
| |
| #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ |
| packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i]); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \ |
| packet_helper<COND,Packet> h; \ |
| for (int i=0; i<PacketSize; ++i) \ |
| ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ |
| h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define CHECK_CWISE3_IF(COND, REFOP, POP) if (COND) { \ |
| packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) \ |
| ref[i] = \ |
| REFOP(data1[i], data1[i + PacketSize], data1[i + 2 * PacketSize]); \ |
| h.store(data2, POP(h.load(data1), h.load(data1 + PacketSize), \ |
| h.load(data1 + 2 * PacketSize))); \ |
| VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| #define REF_ADD(a,b) ((a)+(b)) |
| #define REF_SUB(a,b) ((a)-(b)) |
| #define REF_MUL(a,b) ((a)*(b)) |
| #define REF_DIV(a,b) ((a)/(b)) |
| |
| template<typename Scalar,typename Packet> void packetmath() |
| { |
| using std::abs; |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| if (g_first_pass) |
| std::cerr << "=== Testing packet of type '" << typeid(Packet).name() |
| << "' and scalar type '" << typeid(Scalar).name() |
| << "' and size '" << PacketSize << "' ===\n" ; |
| |
| const int max_size = PacketSize > 4 ? PacketSize : 4; |
| const int size = PacketSize*max_size; |
| EIGEN_ALIGN_MAX Scalar data1[size]; |
| EIGEN_ALIGN_MAX Scalar data2[size]; |
| EIGEN_ALIGN_MAX Scalar data3[size]; |
| EIGEN_ALIGN_MAX Packet packets[PacketSize*2]; |
| EIGEN_ALIGN_MAX Scalar ref[size]; |
| RealScalar refvalue = RealScalar(0); |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); |
| data2[i] = internal::random<Scalar>()/RealScalar(PacketSize); |
| refvalue = (std::max)(refvalue,abs(data1[i])); |
| } |
| |
| internal::pstore(data2, internal::pload<Packet>(data1)); |
| VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| internal::pstore(data2, internal::ploadu<Packet>(data1+offset)); |
| VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu"); |
| } |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| internal::pstoreu(data2+offset, internal::pload<Packet>(data1)); |
| VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu"); |
| } |
| |
| if (internal::unpacket_traits<Packet>::masked_load_available) |
| { |
| packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h; |
| unsigned long long max_umask = (0x1ull << PacketSize); |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| for (unsigned long long umask=0; umask<max_umask; ++umask) |
| { |
| h.store(data2, h.load(data1+offset, umask)); |
| for (int k=0; k<PacketSize; ++k) |
| data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0); |
| VERIFY(areApprox(data3, data2, PacketSize) && "internal::ploadu masked"); |
| } |
| } |
| } |
| |
| if (internal::unpacket_traits<Packet>::masked_store_available) |
| { |
| packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h; |
| unsigned long long max_umask = (0x1ull << PacketSize); |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| for (unsigned long long umask=0; umask<max_umask; ++umask) |
| { |
| internal::pstore(data2, internal::pset1<Packet>(Scalar(0))); |
| h.store(data2, h.loadu(data1+offset), umask); |
| for (int k=0; k<PacketSize; ++k) |
| data3[k] = ((umask & ( 0x1ull << k )) >> k) ? data1[k+offset] : Scalar(0); |
| VERIFY(areApprox(data3, data2, PacketSize) && "internal::pstoreu masked"); |
| } |
| } |
| } |
| |
| for (int offset=0; offset<PacketSize; ++offset) |
| { |
| #define MIN(A,B) (A<B?A:B) |
| packets[0] = internal::pload<Packet>(data1); |
| packets[1] = internal::pload<Packet>(data1+PacketSize); |
| if (offset==0) internal::palign<0>(packets[0], packets[1]); |
| else if (offset==1) internal::palign<MIN(1,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==2) internal::palign<MIN(2,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==3) internal::palign<MIN(3,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==4) internal::palign<MIN(4,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==5) internal::palign<MIN(5,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==6) internal::palign<MIN(6,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==7) internal::palign<MIN(7,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==8) internal::palign<MIN(8,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==9) internal::palign<MIN(9,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==10) internal::palign<MIN(10,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==11) internal::palign<MIN(11,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==12) internal::palign<MIN(12,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==13) internal::palign<MIN(13,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==14) internal::palign<MIN(14,PacketSize-1)>(packets[0], packets[1]); |
| else if (offset==15) internal::palign<MIN(15,PacketSize-1)>(packets[0], packets[1]); |
| internal::pstore(data2, packets[0]); |
| |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[i+offset]; |
| |
| // palign is not used anymore, so let's just put a warning if it fails |
| ++g_test_level; |
| VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign"); |
| --g_test_level; |
| } |
| |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasNegate); |
| // Disabled as it is not clear why it would be mandatory to support division. |
| //VERIFY((internal::is_same<Scalar,int>::value) || (!PacketTraits::Vectorizable) || PacketTraits::HasDiv); |
| |
| CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd); |
| CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub); |
| CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul); |
| CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv); |
| |
| CHECK_CWISE1(internal::pnot, internal::pnot); |
| CHECK_CWISE1(internal::pzero, internal::pzero); |
| CHECK_CWISE1(internal::ptrue, internal::ptrue); |
| CHECK_CWISE1(internal::negate, internal::pnegate); |
| CHECK_CWISE1(numext::conj, internal::pconj); |
| |
| for(int offset=0;offset<3;++offset) |
| { |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[offset]; |
| internal::pstore(data2, internal::pset1<Packet>(data1[offset])); |
| VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1"); |
| } |
| |
| { |
| for (int i=0; i<PacketSize*4; ++i) |
| ref[i] = data1[i/PacketSize]; |
| Packet A0, A1, A2, A3; |
| internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3); |
| internal::pstore(data2+0*PacketSize, A0); |
| internal::pstore(data2+1*PacketSize, A1); |
| internal::pstore(data2+2*PacketSize, A2); |
| internal::pstore(data2+3*PacketSize, A3); |
| VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4"); |
| } |
| |
| { |
| for (int i=0; i<PacketSize*2; ++i) |
| ref[i] = data1[i/PacketSize]; |
| Packet A0, A1; |
| internal::pbroadcast2<Packet>(data1, A0, A1); |
| internal::pstore(data2+0*PacketSize, A0); |
| internal::pstore(data2+1*PacketSize, A1); |
| VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2"); |
| } |
| |
| VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst"); |
| |
| if(PacketSize>1) |
| { |
| // apply different offsets to check that ploaddup is robust to unaligned inputs |
| for(int offset=0;offset<4;++offset) |
| { |
| for(int i=0;i<PacketSize/2;++i) |
| ref[2*i+0] = ref[2*i+1] = data1[offset+i]; |
| internal::pstore(data2,internal::ploaddup<Packet>(data1+offset)); |
| VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup"); |
| } |
| } |
| |
| if(PacketSize>2) |
| { |
| // apply different offsets to check that ploadquad is robust to unaligned inputs |
| for(int offset=0;offset<4;++offset) |
| { |
| for(int i=0;i<PacketSize/4;++i) |
| ref[4*i+0] = ref[4*i+1] = ref[4*i+2] = ref[4*i+3] = data1[offset+i]; |
| internal::pstore(data2,internal::ploadquad<Packet>(data1+offset)); |
| VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad"); |
| } |
| } |
| |
| ref[0] = Scalar(0); |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] += data1[i]; |
| VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); |
| |
| if(PacketSize==8 && internal::unpacket_traits<typename internal::unpacket_traits<Packet>::half>::size ==4) // so far, predux_half_downto4 is only required in such a case |
| { |
| int HalfPacketSize = PacketSize>4 ? PacketSize/2 : PacketSize; |
| for (int i=0; i<HalfPacketSize; ++i) |
| ref[i] = Scalar(0); |
| for (int i=0; i<PacketSize; ++i) |
| ref[i%HalfPacketSize] += data1[i]; |
| internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1))); |
| VERIFY(areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4"); |
| } |
| |
| ref[0] = Scalar(1); |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] *= data1[i]; |
| VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul"); |
| |
| if (PacketTraits::HasReduxp) |
| { |
| for (int j=0; j<PacketSize; ++j) |
| { |
| ref[j] = Scalar(0); |
| for (int i=0; i<PacketSize; ++i) |
| ref[j] += data1[i+j*PacketSize]; |
| packets[j] = internal::pload<Packet>(data1+j*PacketSize); |
| } |
| internal::pstore(data2, internal::preduxp(packets)); |
| VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp"); |
| } |
| |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[PacketSize-i-1]; |
| internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1))); |
| VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse"); |
| |
| internal::PacketBlock<Packet> kernel; |
| for (int i=0; i<PacketSize; ++i) { |
| kernel.packet[i] = internal::pload<Packet>(data1+i*PacketSize); |
| } |
| ptranspose(kernel); |
| for (int i=0; i<PacketSize; ++i) { |
| internal::pstore(data2, kernel.packet[i]); |
| for (int j = 0; j < PacketSize; ++j) { |
| VERIFY(isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose"); |
| } |
| } |
| |
| if (PacketTraits::HasBlend) { |
| Packet thenPacket = internal::pload<Packet>(data1); |
| Packet elsePacket = internal::pload<Packet>(data2); |
| EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector; |
| for (int i = 0; i < PacketSize; ++i) { |
| selector.select[i] = i; |
| } |
| |
| Packet blend = internal::pblend(selector, thenPacket, elsePacket); |
| EIGEN_ALIGN_MAX Scalar result[size]; |
| internal::pstore(result, blend); |
| for (int i = 0; i < PacketSize; ++i) { |
| VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); |
| } |
| } |
| |
| if (PacketTraits::HasBlend || g_vectorize_sse) { |
| // pinsertfirst |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[i]; |
| Scalar s = internal::random<Scalar>(); |
| ref[0] = s; |
| internal::pstore(data2, internal::pinsertfirst(internal::pload<Packet>(data1),s)); |
| VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertfirst"); |
| } |
| |
| if (PacketTraits::HasBlend || g_vectorize_sse) { |
| // pinsertlast |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[i]; |
| Scalar s = internal::random<Scalar>(); |
| ref[PacketSize-1] = s; |
| internal::pstore(data2, internal::pinsertlast(internal::pload<Packet>(data1),s)); |
| VERIFY(areApprox(ref, data2, PacketSize) && "internal::pinsertlast"); |
| } |
| |
| { |
| for (int i=0; i<PacketSize; ++i) |
| { |
| data1[i] = internal::random<Scalar>(); |
| unsigned char v = internal::random<bool>() ? 0xff : 0; |
| char* bytes = (char*)(data1+PacketSize+i); |
| for(int k=0; k<int(sizeof(Scalar)); ++k) { |
| bytes[k] = v; |
| } |
| } |
| CHECK_CWISE2_IF(true, internal::por, internal::por); |
| CHECK_CWISE2_IF(true, internal::pxor, internal::pxor); |
| CHECK_CWISE2_IF(true, internal::pand, internal::pand); |
| CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot); |
| } |
| { |
| for (int i = 0; i < PacketSize; ++i) { |
| // "if" mask |
| unsigned char v = internal::random<bool>() ? 0xff : 0; |
| char* bytes = (char*)(data1+i); |
| for(int k=0; k<int(sizeof(Scalar)); ++k) { |
| bytes[k] = v; |
| } |
| // "then" packet |
| data1[i+PacketSize] = internal::random<Scalar>(); |
| // "else" packet |
| data1[i+2*PacketSize] = internal::random<Scalar>(); |
| } |
| CHECK_CWISE3_IF(true, internal::pselect, internal::pselect); |
| } |
| |
| { |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(i); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); |
| } |
| } |
| |
| template<typename Scalar,typename Packet> void packetmath_real() |
| { |
| using std::abs; |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| const int size = PacketSize*4; |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3)); |
| data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3)); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); |
| CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); |
| CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan); |
| |
| CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround); |
| CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); |
| CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); |
| |
| // See bug 1785. |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = -1.5 + i; |
| data2[i] = -1.5 + i; |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround); |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>(-1,1); |
| data2[i] = internal::random<Scalar>(-1,1); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); |
| CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos); |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>(-87,88); |
| data2[i] = internal::random<Scalar>(-87,88); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); |
| data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); |
| } |
| data1[0] = 1e-20; |
| CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); |
| if(PacketTraits::HasExp && PacketSize>=2) |
| { |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| data1[1] = std::numeric_limits<Scalar>::epsilon(); |
| packet_helper<PacketTraits::HasExp,Packet> h; |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::epsilon()), data2[1]); |
| |
| data1[0] = -std::numeric_limits<Scalar>::epsilon(); |
| data1[1] = 0; |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::epsilon()), data2[0]); |
| VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]); |
| |
| data1[0] = (std::numeric_limits<Scalar>::min)(); |
| data1[1] = -(std::numeric_limits<Scalar>::min)(); |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY_IS_EQUAL(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]); |
| VERIFY_IS_EQUAL(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]); |
| |
| data1[0] = std::numeric_limits<Scalar>::denorm_min(); |
| data1[1] = -std::numeric_limits<Scalar>::denorm_min(); |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]); |
| VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]); |
| } |
| |
| if (PacketTraits::HasTanh) { |
| // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details. |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| packet_helper<internal::packet_traits<Scalar>::HasTanh,Packet> h; |
| h.store(data2, internal::ptanh(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| } |
| |
| #if EIGEN_HAS_C99_MATH |
| { |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h; |
| h.store(data2, internal::plgamma(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| } |
| if (internal::packet_traits<Scalar>::HasErf) { |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h; |
| h.store(data2, internal::perf(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| } |
| { |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h; |
| h.store(data2, internal::perfc(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| } |
| { |
| for (int i=0; i<size; ++i) { |
| data1[i] = internal::random<Scalar>(0,1); |
| } |
| CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasNdtri, numext::ndtri, internal::pndtri); |
| } |
| #endif // EIGEN_HAS_C99_MATH |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); |
| data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); |
| } |
| |
| if(internal::random<float>(0,1)<0.1f) |
| data1[internal::random<int>(0, PacketSize)] = 0; |
| CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt); |
| CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0e, internal::pbessel_i0e); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1e, internal::pbessel_i1e); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j0, internal::pbessel_j0); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_j1, internal::pbessel_j1); |
| |
| data1[0] = std::numeric_limits<Scalar>::infinity(); |
| CHECK_CWISE1_IF(PacketTraits::HasRsqrt, Scalar(1)/std::sqrt, internal::prsqrt); |
| |
| // Use a smaller data range for the positive bessel operations as these |
| // can have much more error at very small and very large values. |
| for (int i=0; i<size; ++i) { |
| data1[i] = internal::random<Scalar>(0.01,1) * std::pow( |
| Scalar(10), internal::random<Scalar>(-1,2)); |
| data2[i] = internal::random<Scalar>(0.01,1) * std::pow( |
| Scalar(10), internal::random<Scalar>(-1,2)); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y0, internal::pbessel_y0); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_y1, internal::pbessel_y1); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0, internal::pbessel_k0); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k0e, internal::pbessel_k0e); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1, internal::pbessel_k1); |
| CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_k1e, internal::pbessel_k1e); |
| |
| #if EIGEN_HAS_C99_MATH && (__cplusplus > 199711L) |
| CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma); |
| CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf); |
| CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc); |
| data1[0] = std::numeric_limits<Scalar>::infinity(); |
| data1[1] = Scalar(-1); |
| CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p); |
| data1[0] = std::numeric_limits<Scalar>::infinity(); |
| data1[1] = -std::numeric_limits<Scalar>::infinity(); |
| CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1); |
| #endif |
| |
| if(PacketSize>=2) |
| { |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| data1[1] = std::numeric_limits<Scalar>::epsilon(); |
| if(PacketTraits::HasLog) |
| { |
| packet_helper<PacketTraits::HasLog,Packet> h; |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::epsilon()), data2[1]); |
| |
| data1[0] = -std::numeric_limits<Scalar>::epsilon(); |
| data1[1] = 0; |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]); |
| |
| data1[0] = (std::numeric_limits<Scalar>::min)(); |
| data1[1] = -(std::numeric_limits<Scalar>::min)(); |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY_IS_EQUAL(std::log((std::numeric_limits<Scalar>::min)()), data2[0]); |
| VERIFY((numext::isnan)(data2[1])); |
| |
| data1[0] = std::numeric_limits<Scalar>::denorm_min(); |
| data1[1] = -std::numeric_limits<Scalar>::denorm_min(); |
| h.store(data2, internal::plog(h.load(data1))); |
| // VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]); |
| VERIFY((numext::isnan)(data2[1])); |
| |
| data1[0] = Scalar(-1.0f); |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| |
| data1[0] = std::numeric_limits<Scalar>::infinity(); |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isinf)(data2[0])); |
| } |
| if(PacketTraits::HasLog1p) { |
| packet_helper<PacketTraits::HasLog1p,Packet> h; |
| data1[0] = Scalar(-2); |
| data1[1] = -std::numeric_limits<Scalar>::infinity(); |
| h.store(data2, internal::plog1p(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| } |
| if(PacketTraits::HasSqrt) |
| { |
| packet_helper<PacketTraits::HasSqrt,Packet> h; |
| data1[0] = Scalar(-1.0f); |
| data1[1] = -std::numeric_limits<Scalar>::denorm_min(); |
| h.store(data2, internal::psqrt(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| } |
| if(PacketTraits::HasCos) |
| { |
| packet_helper<PacketTraits::HasCos,Packet> h; |
| for(Scalar k = 1; k<Scalar(10000)/std::numeric_limits<Scalar>::epsilon(); k*=2) |
| { |
| for(int k1=0;k1<=1; ++k1) |
| { |
| data1[0] = (2*k+k1 )*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2); |
| data1[1] = (2*k+2+k1)*Scalar(EIGEN_PI)/2 * internal::random<Scalar>(0.8,1.2); |
| h.store(data2, internal::pcos(h.load(data1))); |
| h.store(data2+PacketSize, internal::psin(h.load(data1))); |
| VERIFY(data2[0]<=Scalar(1.) && data2[0]>=Scalar(-1.)); |
| VERIFY(data2[1]<=Scalar(1.) && data2[1]>=Scalar(-1.)); |
| VERIFY(data2[PacketSize+0]<=Scalar(1.) && data2[PacketSize+0]>=Scalar(-1.)); |
| VERIFY(data2[PacketSize+1]<=Scalar(1.) && data2[PacketSize+1]>=Scalar(-1.)); |
| |
| VERIFY_IS_APPROX(numext::abs2(data2[0])+numext::abs2(data2[PacketSize+0]), Scalar(1)); |
| VERIFY_IS_APPROX(numext::abs2(data2[1])+numext::abs2(data2[PacketSize+1]), Scalar(1)); |
| } |
| } |
| |
| data1[0] = std::numeric_limits<Scalar>::infinity(); |
| data1[1] = -std::numeric_limits<Scalar>::infinity(); |
| h.store(data2, internal::psin(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| |
| h.store(data2, internal::pcos(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| h.store(data2, internal::psin(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| h.store(data2, internal::pcos(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| |
| data1[0] = -Scalar(0.); |
| h.store(data2, internal::psin(h.load(data1))); |
| VERIFY( internal::biteq(data2[0], data1[0]) ); |
| h.store(data2, internal::pcos(h.load(data1))); |
| VERIFY_IS_EQUAL(data2[0], Scalar(1)); |
| } |
| } |
| } |
| |
| template<typename Scalar,typename Packet> void packetmath_notcomplex() |
| { |
| using std::abs; |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; |
| |
| Array<Scalar,Dynamic,1>::Map(data1, PacketSize*4).setRandom(); |
| |
| ref[0] = data1[0]; |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] = (std::min)(ref[0],data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min"); |
| |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax); |
| |
| CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); |
| CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); |
| CHECK_CWISE1(abs, internal::pabs); |
| |
| ref[0] = data1[0]; |
| for (int i=0; i<PacketSize; ++i) |
| ref[0] = (std::max)(ref[0],data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max"); |
| |
| for (int i=0; i<PacketSize; ++i) |
| ref[i] = data1[0]+Scalar(i); |
| internal::pstore(data2, internal::plset<Packet>(data1[0])); |
| VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset"); |
| |
| { |
| unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1); |
| // predux_all - not needed yet |
| // for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff; |
| // VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)"); |
| // for(int k=0; k<PacketSize; ++k) |
| // { |
| // for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0; |
| // VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)"); |
| // for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff; |
| // } |
| |
| // predux_any |
| for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0x0; |
| VERIFY( (!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)"); |
| for(int k=0; k<PacketSize; ++k) |
| { |
| for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff; |
| VERIFY( internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)"); |
| for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x00; |
| } |
| } |
| } |
| |
| template<typename Scalar,typename Packet,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) |
| { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| internal::conj_if<ConjLhs> cj0; |
| internal::conj_if<ConjRhs> cj1; |
| internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj; |
| internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj; |
| |
| for(int i=0;i<PacketSize;++i) |
| { |
| ref[i] = cj0(data1[i]) * cj1(data2[i]); |
| VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul"); |
| } |
| internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2))); |
| VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul"); |
| |
| for(int i=0;i<PacketSize;++i) |
| { |
| Scalar tmp = ref[i]; |
| ref[i] += cj0(data1[i]) * cj1(data2[i]); |
| VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd"); |
| } |
| internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval))); |
| VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); |
| } |
| |
| template<typename Scalar,typename Packet> void packetmath_complex() |
| { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| const int size = PacketSize*4; |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; |
| EIGEN_ALIGN_MAX Scalar pval[PacketSize*4]; |
| |
| for (int i=0; i<size; ++i) |
| { |
| data1[i] = internal::random<Scalar>() * Scalar(1e2); |
| data2[i] = internal::random<Scalar>() * Scalar(1e2); |
| } |
| |
| test_conj_helper<Scalar,Packet,false,false> (data1,data2,ref,pval); |
| test_conj_helper<Scalar,Packet,false,true> (data1,data2,ref,pval); |
| test_conj_helper<Scalar,Packet,true,false> (data1,data2,ref,pval); |
| test_conj_helper<Scalar,Packet,true,true> (data1,data2,ref,pval); |
| |
| { |
| for(int i=0;i<PacketSize;++i) |
| ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i])); |
| internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1))); |
| VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip"); |
| } |
| } |
| |
| template<typename Scalar,typename Packet> void packetmath_scatter_gather() |
| { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize]; |
| RealScalar refvalue = 0; |
| for (int i=0; i<PacketSize; ++i) { |
| data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); |
| } |
| |
| int stride = internal::random<int>(1,20); |
| |
| EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20]; |
| memset(buffer, 0, 20*PacketSize*sizeof(Scalar)); |
| Packet packet = internal::pload<Packet>(data1); |
| internal::pscatter<Scalar, Packet>(buffer, packet, stride); |
| |
| for (int i = 0; i < PacketSize*20; ++i) { |
| if ((i%stride) == 0 && i<stride*PacketSize) { |
| VERIFY(isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter"); |
| } else { |
| VERIFY(isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter"); |
| } |
| } |
| |
| for (int i=0; i<PacketSize*7; ++i) { |
| buffer[i] = internal::random<Scalar>()/RealScalar(PacketSize); |
| } |
| packet = internal::pgather<Scalar, Packet>(buffer, 7); |
| internal::pstore(data1, packet); |
| for (int i = 0; i < PacketSize; ++i) { |
| VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather"); |
| } |
| } |
| |
| |
| template< |
| typename Scalar, |
| typename PacketType, |
| bool IsComplex = NumTraits<Scalar>::IsComplex, |
| bool IsInteger = NumTraits<Scalar>::IsInteger> |
| struct runall; |
| |
| template<typename Scalar,typename PacketType> |
| struct runall<Scalar,PacketType,false,false> { // i.e. float or double |
| static void run() { |
| packetmath<Scalar,PacketType>(); |
| packetmath_scatter_gather<Scalar,PacketType>(); |
| packetmath_notcomplex<Scalar,PacketType>(); |
| packetmath_real<Scalar,PacketType>(); |
| } |
| }; |
| |
| template<typename Scalar,typename PacketType> |
| struct runall<Scalar,PacketType,false,true> { // i.e. int |
| static void run() { |
| packetmath<Scalar,PacketType>(); |
| packetmath_scatter_gather<Scalar,PacketType>(); |
| packetmath_notcomplex<Scalar,PacketType>(); |
| } |
| }; |
| |
| template<typename Scalar,typename PacketType> |
| struct runall<Scalar,PacketType,true,false> { // i.e. complex |
| static void run() { |
| packetmath<Scalar,PacketType>(); |
| packetmath_scatter_gather<Scalar,PacketType>(); |
| packetmath_complex<Scalar,PacketType>(); |
| } |
| }; |
| |
| template< |
| typename Scalar, |
| typename PacketType = typename internal::packet_traits<Scalar>::type, |
| bool Vectorized = internal::packet_traits<Scalar>::Vectorizable, |
| bool HasHalf = !internal::is_same<typename internal::unpacket_traits<PacketType>::half,PacketType>::value > |
| struct runner; |
| |
| template<typename Scalar,typename PacketType> |
| struct runner<Scalar,PacketType,true,true> |
| { |
| static void run() { |
| runall<Scalar,PacketType>::run(); |
| runner<Scalar,typename internal::unpacket_traits<PacketType>::half>::run(); |
| } |
| }; |
| |
| template<typename Scalar,typename PacketType> |
| struct runner<Scalar,PacketType,true,false> |
| { |
| static void run() { |
| runall<Scalar,PacketType>::run(); |
| runall<Scalar,Scalar>::run(); |
| } |
| }; |
| |
| template<typename Scalar,typename PacketType> |
| struct runner<Scalar,PacketType,false,false> |
| { |
| static void run() { |
| runall<Scalar,PacketType>::run(); |
| } |
| }; |
| |
| EIGEN_DECLARE_TEST(packetmath) |
| { |
| g_first_pass = true; |
| for(int i = 0; i < g_repeat; i++) { |
| |
| CALL_SUBTEST_1( runner<float>::run() ); |
| CALL_SUBTEST_2( runner<double>::run() ); |
| CALL_SUBTEST_3( runner<int>::run() ); |
| CALL_SUBTEST_4( runner<std::complex<float> >::run() ); |
| CALL_SUBTEST_5( runner<std::complex<double> >::run() ); |
| CALL_SUBTEST_6(( packetmath<half,internal::packet_traits<half>::type>() )); |
| g_first_pass = false; |
| } |
| } |