| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2025 The Eigen Authors |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| // wrapper that disables array-oriented access to real and imaginary components |
| struct TestComplex : public std::complex<float> { |
| TestComplex() = default; |
| TestComplex(const TestComplex&) = default; |
| TestComplex(std::complex<float> x) : std::complex<float>(x){}; |
| TestComplex(float x) : std::complex<float>(x){}; |
| }; |
| template <> |
| struct NumTraits<TestComplex> : NumTraits<std::complex<float>> {}; |
| template <> |
| struct internal::random_impl<TestComplex> : internal::random_impl<std::complex<float>> {}; |
| |
| template <typename T> |
| void test_realview_readonly(const T&) { |
| using Scalar = typename T::Scalar; |
| using RealScalar = typename NumTraits<Scalar>::Real; |
| |
| constexpr Index minRows = T::RowsAtCompileTime == Dynamic ? 1 : T::RowsAtCompileTime; |
| constexpr Index maxRows = T::MaxRowsAtCompileTime == Dynamic ? (EIGEN_TEST_MAX_SIZE / 2) : T::MaxRowsAtCompileTime; |
| constexpr Index minCols = T::ColsAtCompileTime == Dynamic ? 1 : T::ColsAtCompileTime; |
| constexpr Index maxCols = T::MaxColsAtCompileTime == Dynamic ? (EIGEN_TEST_MAX_SIZE / 2) : T::MaxColsAtCompileTime; |
| |
| constexpr Index rowFactor = (NumTraits<Scalar>::IsComplex && !T::IsRowMajor) ? 2 : 1; |
| constexpr Index colFactor = (NumTraits<Scalar>::IsComplex && T::IsRowMajor) ? 2 : 1; |
| constexpr Index sizeFactor = NumTraits<Scalar>::IsComplex ? 2 : 1; |
| |
| Index rows = internal::random<Index>(minRows, maxRows); |
| Index cols = internal::random<Index>(minCols, maxCols); |
| |
| T A(rows, cols), B(rows, cols); |
| |
| VERIFY(A.realView().rows() == rowFactor * A.rows()); |
| VERIFY(A.realView().cols() == colFactor * A.cols()); |
| VERIFY(A.realView().size() == sizeFactor * A.size()); |
| |
| A.setRandom(); |
| VERIFY_IS_APPROX(A.matrix().cwiseAbs2().sum(), A.realView().matrix().cwiseAbs2().sum()); |
| |
| RealScalar alpha = internal::random(RealScalar(1), RealScalar(2)); |
| |
| // B = A * alpha |
| for (Index r = 0; r < rows; r++) { |
| for (Index c = 0; c < cols; c++) { |
| B.coeffRef(r, c) = A.coeff(r, c) * Scalar(alpha); |
| } |
| } |
| VERIFY_IS_CWISE_APPROX(B.realView(), A.realView() * alpha); |
| |
| // B = A / alpha |
| for (Index r = 0; r < rows; r++) { |
| for (Index c = 0; c < cols; c++) { |
| B.coeffRef(r, c) = A.coeff(r, c) / Scalar(alpha); |
| } |
| } |
| VERIFY_IS_CWISE_APPROX(B.realView(), A.realView() / alpha); |
| } |
| |
| template <typename T> |
| void test_realview(const T&) { |
| using Scalar = typename T::Scalar; |
| using RealScalar = typename NumTraits<Scalar>::Real; |
| |
| constexpr Index minRows = T::RowsAtCompileTime == Dynamic ? 1 : T::RowsAtCompileTime; |
| constexpr Index maxRows = T::MaxRowsAtCompileTime == Dynamic ? (EIGEN_TEST_MAX_SIZE / 2) : T::MaxRowsAtCompileTime; |
| constexpr Index minCols = T::ColsAtCompileTime == Dynamic ? 1 : T::ColsAtCompileTime; |
| constexpr Index maxCols = T::MaxColsAtCompileTime == Dynamic ? (EIGEN_TEST_MAX_SIZE / 2) : T::MaxColsAtCompileTime; |
| |
| constexpr Index rowFactor = (NumTraits<Scalar>::IsComplex && !T::IsRowMajor) ? 2 : 1; |
| constexpr Index colFactor = (NumTraits<Scalar>::IsComplex && T::IsRowMajor) ? 2 : 1; |
| constexpr Index sizeFactor = NumTraits<Scalar>::IsComplex ? 2 : 1; |
| |
| const Index rows = internal::random<Index>(minRows, maxRows); |
| const Index cols = internal::random<Index>(minCols, maxCols); |
| const Index realViewRows = rowFactor * rows; |
| const Index realViewCols = colFactor * cols; |
| |
| const T A = T::Random(rows, cols); |
| T B; |
| |
| VERIFY_IS_EQUAL(A.realView().rows(), rowFactor * A.rows()); |
| VERIFY_IS_EQUAL(A.realView().cols(), colFactor * A.cols()); |
| VERIFY_IS_EQUAL(A.realView().size(), sizeFactor * A.size()); |
| |
| VERIFY_IS_APPROX(A.matrix().cwiseAbs2().sum(), A.realView().matrix().cwiseAbs2().sum()); |
| |
| // test re-sizing realView during assignment |
| B.realView() = A.realView(); |
| VERIFY_IS_APPROX(A, B); |
| VERIFY_IS_APPROX(A.realView(), B.realView()); |
| |
| const RealScalar alpha = internal::random(RealScalar(1), RealScalar(2)); |
| |
| // B = A * alpha |
| for (Index r = 0; r < rows; r++) { |
| for (Index c = 0; c < cols; c++) { |
| B.coeffRef(r, c) = A.coeff(r, c) * Scalar(alpha); |
| } |
| } |
| VERIFY_IS_APPROX(B.realView(), A.realView() * alpha); |
| |
| B = A; |
| B.realView() *= alpha; |
| VERIFY_IS_APPROX(B.realView(), A.realView() * alpha); |
| |
| // B = A / alpha |
| for (Index r = 0; r < rows; r++) { |
| for (Index c = 0; c < cols; c++) { |
| B.coeffRef(r, c) = A.coeff(r, c) / Scalar(alpha); |
| } |
| } |
| VERIFY_IS_APPROX(B.realView(), A.realView() / alpha); |
| |
| B = A; |
| B.realView() /= alpha; |
| VERIFY_IS_APPROX(B.realView(), A.realView() / alpha); |
| |
| // force some usual access patterns |
| Index malloc_size = (rows * cols * sizeof(Scalar)) + sizeof(RealScalar); |
| void* data1 = internal::aligned_malloc(malloc_size); |
| void* data2 = internal::aligned_malloc(malloc_size); |
| Scalar* ptr1 = reinterpret_cast<Scalar*>(reinterpret_cast<uint8_t*>(data1) + sizeof(RealScalar)); |
| Scalar* ptr2 = reinterpret_cast<Scalar*>(reinterpret_cast<uint8_t*>(data2) + sizeof(RealScalar)); |
| Map<T> C(ptr1, rows, cols), D(ptr2, rows, cols); |
| |
| C.setRandom(); |
| D.setRandom(); |
| for (Index r = 0; r < realViewRows; r++) { |
| for (Index c = 0; c < realViewCols; c++) { |
| C.realView().coeffRef(r, c) = D.realView().coeff(r, c); |
| } |
| } |
| VERIFY_IS_CWISE_EQUAL(C, D); |
| |
| C = A; |
| |
| for (Index c = 0; c < realViewCols - 1; c++) { |
| B.realView().row(0).coeffRef(realViewCols - 1 - c) = C.realView().row(0).coeff(c + 1); |
| } |
| D.realView().row(0).tail(realViewCols - 1) = C.realView().row(0).tail(realViewCols - 1).reverse(); |
| VERIFY_IS_CWISE_EQUAL(B.realView().row(0).tail(realViewCols - 1), D.realView().row(0).tail(realViewCols - 1)); |
| |
| for (Index r = 0; r < realViewRows - 1; r++) { |
| B.realView().col(0).coeffRef(realViewRows - 1 - r) = C.realView().col(0).coeff(r + 1); |
| } |
| D.realView().col(0).tail(realViewRows - 1) = C.realView().col(0).tail(realViewRows - 1).reverse(); |
| VERIFY_IS_CWISE_EQUAL(B.realView().col(0).tail(realViewRows - 1), D.realView().col(0).tail(realViewRows - 1)); |
| } |
| |
| template <typename ComplexScalar, bool Enable = internal::packet_traits<ComplexScalar>::Vectorizable> |
| struct test_edge_cases_impl { |
| static void run() { |
| using namespace internal; |
| using RealScalar = typename NumTraits<ComplexScalar>::Real; |
| using ComplexPacket = typename packet_traits<ComplexScalar>::type; |
| using RealPacket = typename unpacket_traits<ComplexPacket>::as_real; |
| constexpr int ComplexSize = unpacket_traits<ComplexPacket>::size; |
| constexpr int RealSize = 2 * ComplexSize; |
| VectorX<ComplexScalar> a_data(2 * ComplexSize); |
| Map<const VectorX<RealScalar>> a_data_asreal(reinterpret_cast<const RealScalar*>(a_data.data()), 2 * a_data.size()); |
| VectorX<RealScalar> b_data(RealSize); |
| |
| a_data.setRandom(); |
| evaluator<RealView<VectorX<ComplexScalar>>> eval(a_data.realView()); |
| |
| for (Index offset = 0; offset < RealSize; offset++) { |
| for (Index begin = 0; offset + begin < RealSize; begin++) { |
| for (Index count = 0; begin + count < RealSize; count++) { |
| b_data.setRandom(); |
| RealPacket res = eval.template packetSegment<Unaligned, RealPacket>(offset, begin, count); |
| pstoreSegment(b_data.data(), res, begin, count); |
| VERIFY_IS_CWISE_EQUAL(a_data_asreal.segment(offset + begin, count), b_data.segment(begin, count)); |
| } |
| } |
| } |
| } |
| }; |
| |
| template <typename ComplexScalar> |
| struct test_edge_cases_impl<ComplexScalar, false> { |
| static void run() {} |
| }; |
| |
| template <typename ComplexScalar> |
| void test_edge_cases(const ComplexScalar&) { |
| test_edge_cases_impl<ComplexScalar>::run(); |
| } |
| |
| template <typename Scalar, int Rows, int Cols, int MaxRows = Rows, int MaxCols = Cols> |
| void test_realview_readonly() { |
| // if Rows == 1, don't test ColMajor as it is not a valid array |
| using ColMajorMatrixType = Matrix<Scalar, Rows, Cols, Rows == 1 ? RowMajor : ColMajor, MaxRows, MaxCols>; |
| using ColMajorArrayType = Array<Scalar, Rows, Cols, Rows == 1 ? RowMajor : ColMajor, MaxRows, MaxCols>; |
| // if Cols == 1, don't test RowMajor as it is not a valid array |
| using RowMajorMatrixType = Matrix<Scalar, Rows, Cols, Cols == 1 ? ColMajor : RowMajor, MaxRows, MaxCols>; |
| using RowMajorArrayType = Array<Scalar, Rows, Cols, Cols == 1 ? ColMajor : RowMajor, MaxRows, MaxCols>; |
| test_realview_readonly(ColMajorMatrixType()); |
| test_realview_readonly(ColMajorArrayType()); |
| test_realview_readonly(RowMajorMatrixType()); |
| test_realview_readonly(RowMajorArrayType()); |
| } |
| |
| template <typename Scalar, int Rows, int Cols, int MaxRows = Rows, int MaxCols = Cols> |
| void test_realview_readwrite() { |
| // if Rows == 1, don't test ColMajor as it is not a valid array |
| using ColMajorMatrixType = Matrix<Scalar, Rows, Cols, Rows == 1 ? RowMajor : ColMajor, MaxRows, MaxCols>; |
| using ColMajorArrayType = Array<Scalar, Rows, Cols, Rows == 1 ? RowMajor : ColMajor, MaxRows, MaxCols>; |
| // if Cols == 1, don't test RowMajor as it is not a valid array |
| using RowMajorMatrixType = Matrix<Scalar, Rows, Cols, Cols == 1 ? ColMajor : RowMajor, MaxRows, MaxCols>; |
| using RowMajorArrayType = Array<Scalar, Rows, Cols, Cols == 1 ? ColMajor : RowMajor, MaxRows, MaxCols>; |
| test_realview(ColMajorMatrixType()); |
| test_realview(ColMajorArrayType()); |
| test_realview(RowMajorMatrixType()); |
| test_realview(RowMajorArrayType()); |
| } |
| |
| template <int Rows, int Cols, int MaxRows = Rows, int MaxCols = Cols> |
| void test_realview() { |
| test_realview_readwrite<float, Rows, Cols, MaxRows, MaxCols>(); |
| test_realview_readwrite<std::complex<float>, Rows, Cols, MaxRows, MaxCols>(); |
| test_realview_readwrite<double, Rows, Cols, MaxRows, MaxCols>(); |
| test_realview_readwrite<std::complex<double>, Rows, Cols, MaxRows, MaxCols>(); |
| test_realview_readwrite<long double, Rows, Cols, MaxRows, MaxCols>(); |
| test_realview_readwrite<std::complex<long double>, Rows, Cols, MaxRows, MaxCols>(); |
| test_realview_readonly<TestComplex, Rows, Cols, MaxRows, MaxCols>(); |
| } |
| |
| EIGEN_DECLARE_TEST(realview) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1((test_realview<Dynamic, Dynamic, Dynamic, Dynamic>())); |
| CALL_SUBTEST_2((test_realview<Dynamic, Dynamic, 17, Dynamic>())); |
| CALL_SUBTEST_3((test_realview<Dynamic, Dynamic, Dynamic, 19>())); |
| CALL_SUBTEST_4((test_realview<Dynamic, Dynamic, 17, 19>())); |
| CALL_SUBTEST_5((test_realview<17, Dynamic, 17, Dynamic>())); |
| CALL_SUBTEST_6((test_realview<Dynamic, 19, Dynamic, 19>())); |
| CALL_SUBTEST_7((test_realview<17, 19, 17, 19>())); |
| CALL_SUBTEST_8((test_realview<Dynamic, 1>())); |
| CALL_SUBTEST_9((test_realview<1, Dynamic>())); |
| CALL_SUBTEST_10((test_realview<1, 1>())); |
| CALL_SUBTEST_11(test_edge_cases(std::complex<float>())); |
| CALL_SUBTEST_12(test_edge_cases(std::complex<double>())); |
| } |
| } |