|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "lapack_common.h" | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer | 
|  | EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, | 
|  | EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info)) | 
|  | { | 
|  | // TODO exploit the work buffer | 
|  | bool query_size = *lwork==-1; | 
|  | int diag_size = (std::min)(*m,*n); | 
|  |  | 
|  | *info = 0; | 
|  | if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N')  *info = -1; | 
|  | else  if(*m<0)                                                  *info = -2; | 
|  | else  if(*n<0)                                                  *info = -3; | 
|  | else  if(*lda<std::max(1,*m))                                   *info = -5; | 
|  | else  if(*lda<std::max(1,*m))                                   *info = -8; | 
|  | else  if(*ldu <1 || (*jobz=='A' && *ldu <*m) | 
|  | || (*jobz=='O' && *m<*n && *ldu<*m))           *info = -8; | 
|  | else  if(*ldvt<1 || (*jobz=='A' && *ldvt<*n) | 
|  | || (*jobz=='S' && *ldvt<diag_size) | 
|  | || (*jobz=='O' && *m>=*n && *ldvt<*n))         *info = -10; | 
|  |  | 
|  | if(*info!=0) | 
|  | { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6); | 
|  | } | 
|  |  | 
|  | if(query_size) | 
|  | { | 
|  | *lwork = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(*n==0 || *m==0) | 
|  | return 0; | 
|  |  | 
|  | PlainMatrixType mat(*m,*n); | 
|  | mat = matrix(a,*m,*n,*lda); | 
|  |  | 
|  | int option = *jobz=='A' ? ComputeFullU|ComputeFullV | 
|  | : *jobz=='S' ? ComputeThinU|ComputeThinV | 
|  | : *jobz=='O' ? ComputeThinU|ComputeThinV | 
|  | : 0; | 
|  |  | 
|  | BDCSVD<PlainMatrixType> svd(mat,option); | 
|  |  | 
|  | make_vector(s,diag_size) = svd.singularValues().head(diag_size); | 
|  |  | 
|  | if(*jobz=='A') | 
|  | { | 
|  | matrix(u,*m,*m,*ldu)   = svd.matrixU(); | 
|  | matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); | 
|  | } | 
|  | else if(*jobz=='S') | 
|  | { | 
|  | matrix(u,*m,diag_size,*ldu)   = svd.matrixU(); | 
|  | matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); | 
|  | } | 
|  | else if(*jobz=='O' && *m>=*n) | 
|  | { | 
|  | matrix(a,*m,*n,*lda)   = svd.matrixU(); | 
|  | matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); | 
|  | } | 
|  | else if(*jobz=='O') | 
|  | { | 
|  | matrix(u,*m,*m,*ldu)        = svd.matrixU(); | 
|  | matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm | 
|  | EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, | 
|  | EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info)) | 
|  | { | 
|  | // TODO exploit the work buffer | 
|  | bool query_size = *lwork==-1; | 
|  | int diag_size = (std::min)(*m,*n); | 
|  |  | 
|  | *info = 0; | 
|  | if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1; | 
|  | else  if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N') | 
|  | || (*jobu=='O' && *jobv=='O'))                         *info = -2; | 
|  | else  if(*m<0)                                                  *info = -3; | 
|  | else  if(*n<0)                                                  *info = -4; | 
|  | else  if(*lda<std::max(1,*m))                                   *info = -6; | 
|  | else  if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m))    *info = -9; | 
|  | else  if(*ldvt<1 || (*jobv=='A' && *ldvt<*n) | 
|  | || (*jobv=='S' && *ldvt<diag_size))            *info = -11; | 
|  |  | 
|  | if(*info!=0) | 
|  | { | 
|  | int e = -*info; | 
|  | return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6); | 
|  | } | 
|  |  | 
|  | if(query_size) | 
|  | { | 
|  | *lwork = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if(*n==0 || *m==0) | 
|  | return 0; | 
|  |  | 
|  | PlainMatrixType mat(*m,*n); | 
|  | mat = matrix(a,*m,*n,*lda); | 
|  |  | 
|  | int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0) | 
|  | | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0); | 
|  |  | 
|  | JacobiSVD<PlainMatrixType> svd(mat,option); | 
|  |  | 
|  | make_vector(s,diag_size) = svd.singularValues().head(diag_size); | 
|  |  | 
|  | if(*jobu=='A') matrix(u,*m,*m,*ldu)           = svd.matrixU(); | 
|  | else  if(*jobu=='S') matrix(u,*m,diag_size,*ldu)    = svd.matrixU(); | 
|  | else  if(*jobu=='O') matrix(a,*m,diag_size,*lda)           = svd.matrixU(); | 
|  |  | 
|  | if(*jobv=='A') matrix(vt,*n,*n,*ldvt)         = svd.matrixV().adjoint(); | 
|  | else  if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt)  = svd.matrixV().adjoint(); | 
|  | else  if(*jobv=='O') matrix(a,diag_size,*n,*lda)    = svd.matrixV().adjoint(); | 
|  |  | 
|  | return 0; | 
|  | } |