|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define TEST_ENABLE_TEMPORARY_TRACKING | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void product_notemporary(const MatrixType& m) | 
|  | { | 
|  | /* This test checks the number of temporaries created | 
|  | * during the evaluation of a complex expression */ | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> ColMajorMatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ColMajorMatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  | RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows); | 
|  | ColVectorType cv1 = ColVectorType::Random(cols), cvres(cols); | 
|  | RowMajorMatrixType rm3(rows, cols); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), | 
|  | s2 = internal::random<Scalar>(), | 
|  | s3 = internal::random<Scalar>(); | 
|  |  | 
|  | Index c0 = internal::random<Index>(4,cols-8), | 
|  | c1 = internal::random<Index>(8,cols-c0), | 
|  | r0 = internal::random<Index>(4,cols-8), | 
|  | r1 = internal::random<Index>(8,rows-r0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() -= s1 * (m1.transpose() * m2), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0); | 
|  | VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() -= s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1) ), 0); | 
|  |  | 
|  | // NOTE this is because the Block expression is not handled yet by our expression analyser | 
|  | VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() = s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1) ), 1); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).template triangularView<Lower>() * m2, 0); | 
|  | VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1); | 
|  | VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() = (m1 * m2.adjoint()), 0); | 
|  | VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() -= (m1 * m2.adjoint()), 0); | 
|  |  | 
|  | // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products | 
|  | VERIFY_EVALUATION_COUNT( rm3.col(c0).noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * (s2*m2.row(c0)).adjoint(), 1); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m1.template triangularView<Lower>().solveInPlace(m3), 0); | 
|  | VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<Lower>().solveInPlace(m3.transpose()), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2*s3).adjoint(), 0); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<Upper>(), 0); | 
|  | VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template selfadjointView<Lower>() * m2.adjoint(), 0); | 
|  |  | 
|  | // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products | 
|  | VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() = (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2.row(c0)*s3).adjoint(), 1); | 
|  | VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() -= (s1 * m1).adjoint().template selfadjointView<Upper>() * (-m2.row(c0)*s3).adjoint(), 1); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() += m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * (s1*m2.block(r0,c0,r1,c1)), 0); | 
|  | VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * m2.block(r0,c0,r1,c1), 0); | 
|  |  | 
|  | VERIFY_EVALUATION_COUNT( m3.template selfadjointView<Lower>().rankUpdate(m2.adjoint()), 0); | 
|  |  | 
|  | // Here we will get 1 temporary for each resize operation of the lhs operator; resize(r1,c1) would lead to zero temporaries | 
|  | m3.resize(1,1); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Lower>() * m2.block(r0,c0,r1,c1), 1); | 
|  | m3.resize(1,1); | 
|  | VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template triangularView<UnitUpper>()  * m2.block(r0,c0,r1,c1), 1); | 
|  |  | 
|  | // Zero temporaries for lazy products ... | 
|  | VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose().lazyProduct(m3)).diagonal().sum(), 0 ); | 
|  |  | 
|  | // ... and even no temporary for even deeply (>=2) nested products | 
|  | VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().sum(), 0 ); | 
|  | VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().array().abs().sum(), 0 ); | 
|  |  | 
|  | // Zero temporaries for ... CoeffBasedProductMode | 
|  | VERIFY_EVALUATION_COUNT( m3.col(0).template head<5>() * m3.col(0).transpose() + m3.col(0).template head<5>() * m3.col(0).transpose(), 0 ); | 
|  |  | 
|  | // Check matrix * vectors | 
|  | VERIFY_EVALUATION_COUNT( cvres.noalias() = m1 * cv1, 0 ); | 
|  | VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * cv1, 0 ); | 
|  | VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.col(0), 0 ); | 
|  | VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * rv1.adjoint(), 0 ); | 
|  | VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.row(0).transpose(), 0 ); | 
|  | } | 
|  |  | 
|  | void test_product_notemporary() | 
|  | { | 
|  | int s; | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE); | 
|  | CALL_SUBTEST_1( product_notemporary(MatrixXf(s, s)) ); | 
|  | CALL_SUBTEST_2( product_notemporary(MatrixXd(s, s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2); | 
|  | CALL_SUBTEST_3( product_notemporary(MatrixXcf(s,s)) ); | 
|  | CALL_SUBTEST_4( product_notemporary(MatrixXcd(s,s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  | } |