| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_EULERANGLES_H |
| #define EIGEN_EULERANGLES_H |
| |
| template<typename Other, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct ei_eulerangles_assign_impl; |
| |
| // enum { |
| // XYZ, |
| // XYX, |
| // |
| // |
| // }; |
| |
| /** \class EulerAngles |
| * |
| * \brief Represents a rotation in a 3 dimensional space as three Euler angles |
| * |
| * \param _Scalar the scalar type, i.e., the type of the angles. |
| * |
| * \sa class Quaternion, class AngleAxis, class Transform |
| */ |
| template<typename _Scalar> |
| class EulerAngles |
| { |
| public: |
| enum { Dim = 3 }; |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Quaternion<Scalar> QuaternionType; |
| typedef AngleAxis<Scalar> AngleAxisType; |
| |
| protected: |
| |
| Vector3 m_angles; |
| |
| public: |
| |
| EulerAngles() {} |
| inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} |
| inline EulerAngles(const QuaternionType& q) { *this = q; } |
| inline EulerAngles(const AngleAxisType& aa) { *this = aa; } |
| template<typename Derived> |
| inline EulerAngles(const MatrixBase<Derived>& m) { *this = m; } |
| |
| Scalar angle(int i) const { return m_angles.coeff(i); } |
| Scalar& angle(int i) { return m_angles.coeffRef(i); } |
| |
| const Vector3& coeffs() const { return m_angles; } |
| Vector3& coeffs() { return m_angles; } |
| |
| EulerAngles& operator=(const QuaternionType& q); |
| EulerAngles& operator=(const AngleAxisType& ea); |
| template<typename Derived> |
| EulerAngles& operator=(const MatrixBase<Derived>& m); |
| |
| template<typename Derived> |
| EulerAngles& fromRotationMatrix(const MatrixBase<Derived>& m); |
| Matrix3 toRotationMatrix(void) const; |
| }; |
| |
| /** Set \c *this from a quaternion. |
| * The axis is normalized. |
| */ |
| template<typename Scalar> |
| EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const QuaternionType& q) |
| { |
| Scalar y2 = q.y() * q.y(); |
| m_angles.coeffRef(0) = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); |
| m_angles.coeffRef(1) = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); |
| m_angles.coeffRef(2) = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); |
| return *this; |
| } |
| |
| /** Set \c *this from Euler angles \a ea. |
| */ |
| template<typename Scalar> |
| EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const AngleAxisType& aa) |
| { |
| return *this = QuaternionType(aa); |
| } |
| |
| /** Set \c *this from the expression \a xpr: |
| * - if \a xpr is a 3x1 vector, then \a xpr is assumed to be a vector of angles |
| * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
| * and \a xpr is converted to Euler angles |
| */ |
| template<typename Scalar> |
| template<typename Derived> |
| EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const MatrixBase<Derived>& other) |
| { |
| ei_eulerangles_assign_impl<Derived>::run(*this,other.derived()); |
| return *this; |
| } |
| |
| /** Constructs and \returns an equivalent 3x3 rotation matrix. |
| */ |
| template<typename Scalar> |
| typename EulerAngles<Scalar>::Matrix3 |
| EulerAngles<Scalar>::toRotationMatrix(void) const |
| { |
| Vector3 c = m_angles.cwise().cos(); |
| Vector3 s = m_angles.cwise().sin(); |
| return Matrix3() << |
| c.y()*c.z(), -c.y()*s.z(), s.y(), |
| c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(), |
| -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y(); |
| } |
| |
| // set from a rotation matrix |
| template<typename Other> |
| struct ei_eulerangles_assign_impl<Other,3,3> |
| { |
| typedef typename Other::Scalar Scalar; |
| inline static void run(EulerAngles<Scalar>& ea, const Other& mat) |
| { |
| // mat = cy*cz -cy*sz sy |
| // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx |
| // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy |
| ea.angle(1) = std::asin(mat.coeff(0,2)); |
| ea.angle(0) = std::atan2(-mat.coeff(1,2),mat.coeff(2,2)); |
| ea.angle(2) = std::atan2(-mat.coeff(0,1),mat.coeff(0,0)); |
| } |
| }; |
| |
| // set from a vector of angles |
| template<typename Other> |
| struct ei_eulerangles_assign_impl<Other,3,1> |
| { |
| typedef typename Other::Scalar Scalar; |
| inline static void run(EulerAngles<Scalar>& ea, const Other& vec) |
| { |
| ea.coeffs() = vec; |
| } |
| }; |
| |
| #endif // EIGEN_EULERANGLES_H |