| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| template <typename DataType, typename IndexType> |
| static void test_simple_swap_sycl(const Eigen::SyclDevice& sycl_device) |
| { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 7; |
| array<IndexType, 3> tensorColRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| array<IndexType, 3> tensorRowRange = {{sizeDim3, sizeDim2, sizeDim1}}; |
| |
| |
| Tensor<DataType, 3, ColMajor, IndexType> tensor1(tensorColRange); |
| Tensor<DataType, 3, RowMajor, IndexType> tensor2(tensorRowRange); |
| tensor1.setRandom(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu1(gpu_data1, tensorColRange); |
| TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu2(gpu_data2, tensorRowRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType)); |
| gpu2.device(sycl_device)=gpu1.swap_layout(); |
| sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType)); |
| |
| |
| // Tensor<float, 3, ColMajor> tensor(2,3,7); |
| //tensor.setRandom(); |
| |
| // Tensor<float, 3, RowMajor> tensor2 = tensor.swap_layout(); |
| VERIFY_IS_EQUAL(tensor1.dimension(0), tensor2.dimension(2)); |
| VERIFY_IS_EQUAL(tensor1.dimension(1), tensor2.dimension(1)); |
| VERIFY_IS_EQUAL(tensor1.dimension(2), tensor2.dimension(0)); |
| |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 3; ++j) { |
| for (IndexType k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(tensor1(i,j,k), tensor2(k,j,i)); |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| } |
| |
| template <typename DataType, typename IndexType> |
| static void test_swap_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device) |
| { |
| |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 7; |
| array<IndexType, 3> tensorColRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| array<IndexType, 3> tensorRowRange = {{sizeDim3, sizeDim2, sizeDim1}}; |
| |
| Tensor<DataType, 3, ColMajor, IndexType> tensor1(tensorColRange); |
| Tensor<DataType, 3, RowMajor, IndexType> tensor2(tensorRowRange); |
| tensor1.setRandom(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 3, ColMajor, IndexType>> gpu1(gpu_data1, tensorColRange); |
| TensorMap<Tensor<DataType, 3, RowMajor, IndexType>> gpu2(gpu_data2, tensorRowRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType)); |
| gpu2.swap_layout().device(sycl_device)=gpu1; |
| sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType)); |
| |
| |
| // Tensor<float, 3, ColMajor> tensor(2,3,7); |
| // tensor.setRandom(); |
| |
| //Tensor<float, 3, RowMajor> tensor2(7,3,2); |
| // tensor2.swap_layout() = tensor; |
| VERIFY_IS_EQUAL(tensor1.dimension(0), tensor2.dimension(2)); |
| VERIFY_IS_EQUAL(tensor1.dimension(1), tensor2.dimension(1)); |
| VERIFY_IS_EQUAL(tensor1.dimension(2), tensor2.dimension(0)); |
| |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 3; ++j) { |
| for (IndexType k = 0; k < 7; ++k) { |
| VERIFY_IS_EQUAL(tensor1(i,j,k), tensor2(k,j,i)); |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| } |
| |
| |
| template<typename DataType, typename dev_Selector> void sycl_tensor_layout_swap_test_per_device(dev_Selector s){ |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_simple_swap_sycl<DataType, int64_t>(sycl_device); |
| test_swap_as_lvalue_sycl<DataType, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_layout_swap_sycl) |
| { |
| for (const auto& device :Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_tensor_layout_swap_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_tensor_layout_swap_test_per_device<float>(device)); |
| } |
| } |