| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_simple_reshape(const Eigen::SyclDevice& sycl_device) |
| { |
| typename Tensor<DataType, 5 ,DataLayout, IndexType>::Dimensions dim1(2,3,1,7,1); |
| typename Tensor<DataType, 3 ,DataLayout, IndexType>::Dimensions dim2(2,3,7); |
| typename Tensor<DataType, 2 ,DataLayout, IndexType>::Dimensions dim3(6,7); |
| typename Tensor<DataType, 2 ,DataLayout, IndexType>::Dimensions dim4(2,21); |
| |
| Tensor<DataType, 5, DataLayout, IndexType> tensor1(dim1); |
| Tensor<DataType, 3, DataLayout, IndexType> tensor2(dim2); |
| Tensor<DataType, 2, DataLayout, IndexType> tensor3(dim3); |
| Tensor<DataType, 2, DataLayout, IndexType> tensor4(dim4); |
| |
| tensor1.setRandom(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType))); |
| DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(tensor3.size()*sizeof(DataType))); |
| DataType* gpu_data4 = static_cast<DataType*>(sycl_device.allocate(tensor4.size()*sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, dim1); |
| TensorMap<Tensor<DataType, 3,DataLayout, IndexType>> gpu2(gpu_data2, dim2); |
| TensorMap<Tensor<DataType, 2,DataLayout, IndexType>> gpu3(gpu_data3, dim3); |
| TensorMap<Tensor<DataType, 2,DataLayout, IndexType>> gpu4(gpu_data4, dim4); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType)); |
| |
| gpu2.device(sycl_device)=gpu1.reshape(dim2); |
| sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor1.size())*sizeof(DataType)); |
| |
| gpu3.device(sycl_device)=gpu1.reshape(dim3); |
| sycl_device.memcpyDeviceToHost(tensor3.data(), gpu_data3,(tensor3.size())*sizeof(DataType)); |
| |
| gpu4.device(sycl_device)=gpu1.reshape(dim2).reshape(dim4); |
| sycl_device.memcpyDeviceToHost(tensor4.data(), gpu_data4,(tensor4.size())*sizeof(DataType)); |
| for (IndexType i = 0; i < 2; ++i){ |
| for (IndexType j = 0; j < 3; ++j){ |
| for (IndexType k = 0; k < 7; ++k){ |
| VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k)); ///ColMajor |
| if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) { |
| VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k)); ///ColMajor |
| VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k)); ///ColMajor |
| } |
| else{ |
| //VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k)); /// RowMajor |
| VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j*7 +k)); /// RowMajor |
| VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i*3 +j,k)); /// RowMajor |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| sycl_device.deallocate(gpu_data3); |
| sycl_device.deallocate(gpu_data4); |
| } |
| |
| |
| template<typename DataType, int DataLayout, typename IndexType> |
| static void test_reshape_as_lvalue(const Eigen::SyclDevice& sycl_device) |
| { |
| typename Tensor<DataType, 3, DataLayout, IndexType>::Dimensions dim1(2,3,7); |
| typename Tensor<DataType, 2, DataLayout, IndexType>::Dimensions dim2(6,7); |
| typename Tensor<DataType, 5, DataLayout, IndexType>::Dimensions dim3(2,3,1,7,1); |
| Tensor<DataType, 3, DataLayout, IndexType> tensor(dim1); |
| Tensor<DataType, 2, DataLayout, IndexType> tensor2d(dim2); |
| Tensor<DataType, 5, DataLayout, IndexType> tensor5d(dim3); |
| |
| tensor.setRandom(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2d.size()*sizeof(DataType))); |
| DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(tensor5d.size()*sizeof(DataType))); |
| |
| TensorMap< Tensor<DataType, 3, DataLayout, IndexType> > gpu1(gpu_data1, dim1); |
| TensorMap< Tensor<DataType, 2, DataLayout, IndexType> > gpu2(gpu_data2, dim2); |
| TensorMap< Tensor<DataType, 5, DataLayout, IndexType> > gpu3(gpu_data3, dim3); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType)); |
| |
| gpu2.reshape(dim1).device(sycl_device)=gpu1; |
| sycl_device.memcpyDeviceToHost(tensor2d.data(), gpu_data2,(tensor2d.size())*sizeof(DataType)); |
| |
| gpu3.reshape(dim1).device(sycl_device)=gpu1; |
| sycl_device.memcpyDeviceToHost(tensor5d.data(), gpu_data3,(tensor5d.size())*sizeof(DataType)); |
| |
| |
| for (IndexType i = 0; i < 2; ++i){ |
| for (IndexType j = 0; j < 3; ++j){ |
| for (IndexType k = 0; k < 7; ++k){ |
| VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k)); |
| if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) { |
| VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k)); ///ColMajor |
| } |
| else{ |
| VERIFY_IS_EQUAL(tensor2d(i*3 +j,k),tensor(i,j,k)); /// RowMajor |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| sycl_device.deallocate(gpu_data3); |
| } |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_simple_slice(const Eigen::SyclDevice &sycl_device) |
| { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| IndexType sizeDim5 = 11; |
| array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 5,DataLayout, IndexType> tensor(tensorRange); |
| tensor.setRandom(); |
| array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}}; |
| Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range); |
| Eigen::DSizes<IndexType, 5> indices(1,2,3,4,5); |
| Eigen::DSizes<IndexType, 5> sizes(1,1,1,1,1); |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType)); |
| gpu2.device(sycl_device)=gpu1.slice(indices, sizes); |
| sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType)); |
| VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5)); |
| |
| |
| array<IndexType, 5> slice2_range ={{1,1,2,2,3}}; |
| Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range); |
| DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range); |
| Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5); |
| Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3); |
| gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2); |
| sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType)); |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 2; ++j) { |
| for (IndexType k = 0; k < 3; ++k) { |
| VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k)); |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| sycl_device.deallocate(gpu_data3); |
| } |
| |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| static void test_strided_slice_as_rhs_sycl(const Eigen::SyclDevice &sycl_device) |
| { |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| IndexType sizeDim5 = 11; |
| typedef Eigen::DSizes<IndexType, 5> Index5; |
| Index5 strides(1L,1L,1L,1L,1L); |
| Index5 indicesStart(1L,2L,3L,4L,5L); |
| Index5 indicesStop(2L,3L,4L,5L,6L); |
| Index5 lengths(1L,1L,1L,1L,1L); |
| |
| array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}}; |
| Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange); |
| tensor.setRandom(); |
| |
| array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}}; |
| Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range); |
| Tensor<DataType, 5, DataLayout, IndexType> slice_stride1(slice1_range); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType))); |
| DataType* gpu_data_stride2 = static_cast<DataType*>(sycl_device.allocate(slice_stride1.size()*sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride2(gpu_data_stride2, slice1_range); |
| |
| Eigen::DSizes<IndexType, 5> indices(1,2,3,4,5); |
| Eigen::DSizes<IndexType, 5> sizes(1,1,1,1,1); |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType)); |
| gpu2.device(sycl_device)=gpu1.slice(indices, sizes); |
| sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType)); |
| |
| gpu_stride2.device(sycl_device)=gpu1.stridedSlice(indicesStart,indicesStop,strides); |
| sycl_device.memcpyDeviceToHost(slice_stride1.data(), gpu_data_stride2,(slice_stride1.size())*sizeof(DataType)); |
| |
| VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5)); |
| VERIFY_IS_EQUAL(slice_stride1(0,0,0,0,0), tensor(1,2,3,4,5)); |
| |
| array<IndexType, 5> slice2_range ={{1,1,2,2,3}}; |
| Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range); |
| Tensor<DataType, 5, DataLayout, IndexType> strideSlice2(slice2_range); |
| |
| DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType))); |
| DataType* gpu_data_stride3 = static_cast<DataType*>(sycl_device.allocate(strideSlice2.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range); |
| TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride3(gpu_data_stride3, slice2_range); |
| Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5); |
| Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3); |
| Index5 strides2(1L,1L,1L,1L,1L); |
| Index5 indicesStart2(1L,1L,3L,4L,5L); |
| Index5 indicesStop2(2L,2L,5L,6L,8L); |
| |
| gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2); |
| sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType)); |
| |
| gpu_stride3.device(sycl_device)=gpu1.stridedSlice(indicesStart2,indicesStop2,strides2); |
| sycl_device.memcpyDeviceToHost(strideSlice2.data(), gpu_data_stride3,(strideSlice2.size())*sizeof(DataType)); |
| |
| for (IndexType i = 0; i < 2; ++i) { |
| for (IndexType j = 0; j < 2; ++j) { |
| for (IndexType k = 0; k < 3; ++k) { |
| VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k)); |
| VERIFY_IS_EQUAL(strideSlice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k)); |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| sycl_device.deallocate(gpu_data3); |
| } |
| |
| template<typename DataType, int DataLayout, typename IndexType> |
| static void test_strided_slice_write_sycl(const Eigen::SyclDevice& sycl_device) |
| { |
| typedef Tensor<DataType, 2, DataLayout, IndexType> Tensor2f; |
| typedef Eigen::DSizes<IndexType, 2> Index2; |
| IndexType sizeDim1 = 7L; |
| IndexType sizeDim2 = 11L; |
| array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}}; |
| Tensor<DataType, 2, DataLayout, IndexType> tensor(tensorRange),tensor2(tensorRange); |
| IndexType sliceDim1 = 2; |
| IndexType sliceDim2 = 3; |
| array<IndexType, 2> sliceRange = {{sliceDim1, sliceDim2}}; |
| Tensor2f slice(sliceRange); |
| Index2 strides(1L,1L); |
| Index2 indicesStart(3L,4L); |
| Index2 indicesStop(5L,7L); |
| Index2 lengths(2L,3L); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType))); |
| DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, tensorRange); |
| TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu3(gpu_data3, sliceRange); |
| |
| |
| tensor.setRandom(); |
| sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType)); |
| gpu2.device(sycl_device)=gpu1; |
| |
| slice.setRandom(); |
| sycl_device.memcpyHostToDevice(gpu_data3, slice.data(),(slice.size())*sizeof(DataType)); |
| |
| |
| gpu1.slice(indicesStart,lengths).device(sycl_device)=gpu3; |
| gpu2.stridedSlice(indicesStart,indicesStop,strides).device(sycl_device)=gpu3; |
| sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data1,(tensor.size())*sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType)); |
| |
| for(IndexType i=0;i<sizeDim1;i++) |
| for(IndexType j=0;j<sizeDim2;j++){ |
| VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j)); |
| } |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| sycl_device.deallocate(gpu_data3); |
| } |
| |
| template <typename OutIndex, typename DSizes> |
| Eigen::array<OutIndex, DSizes::count> To32BitDims(const DSizes& in) { |
| Eigen::array<OutIndex, DSizes::count> out; |
| for (int i = 0; i < DSizes::count; ++i) { |
| out[i] = in[i]; |
| } |
| return out; |
| } |
| |
| template <class DataType, int DataLayout, typename IndexType, typename ConvertedIndexType> |
| int run_eigen(const SyclDevice& sycl_device) { |
| using TensorI64 = Tensor<DataType, 5, DataLayout, IndexType>; |
| using TensorI32 = Tensor<DataType, 5, DataLayout, ConvertedIndexType>; |
| using TensorMI64 = TensorMap<TensorI64>; |
| using TensorMI32 = TensorMap<TensorI32>; |
| Eigen::array<IndexType, 5> tensor_range{{4, 1, 1, 1, 6}}; |
| Eigen::array<IndexType, 5> slice_range{{4, 1, 1, 1, 3}}; |
| |
| TensorI64 out_tensor_gpu(tensor_range); |
| TensorI64 out_tensor_cpu(tensor_range); |
| out_tensor_cpu.setRandom(); |
| |
| TensorI64 sub_tensor(slice_range); |
| sub_tensor.setRandom(); |
| |
| DataType* out_gpu_data = static_cast<DataType*>(sycl_device.allocate(out_tensor_cpu.size() * sizeof(DataType))); |
| DataType* sub_gpu_data = static_cast<DataType*>(sycl_device.allocate(sub_tensor.size() * sizeof(DataType))); |
| TensorMI64 out_gpu(out_gpu_data, tensor_range); |
| TensorMI64 sub_gpu(sub_gpu_data, slice_range); |
| |
| sycl_device.memcpyHostToDevice(out_gpu_data, out_tensor_cpu.data(), out_tensor_cpu.size() * sizeof(DataType)); |
| sycl_device.memcpyHostToDevice(sub_gpu_data, sub_tensor.data(), sub_tensor.size() * sizeof(DataType)); |
| |
| Eigen::array<ConvertedIndexType, 5> slice_offset_32{{0, 0, 0, 0, 3}}; |
| Eigen::array<ConvertedIndexType, 5> slice_range_32{{4, 1, 1, 1, 3}}; |
| TensorMI32 out_cpu_32(out_tensor_cpu.data(), To32BitDims<ConvertedIndexType>(out_tensor_cpu.dimensions())); |
| TensorMI32 sub_cpu_32(sub_tensor.data(), To32BitDims<ConvertedIndexType>(sub_tensor.dimensions())); |
| TensorMI32 out_gpu_32(out_gpu.data(), To32BitDims<ConvertedIndexType>(out_gpu.dimensions())); |
| TensorMI32 sub_gpu_32(sub_gpu.data(), To32BitDims<ConvertedIndexType>(sub_gpu.dimensions())); |
| |
| out_gpu_32.slice(slice_offset_32, slice_range_32).device(sycl_device) = sub_gpu_32; |
| |
| out_cpu_32.slice(slice_offset_32, slice_range_32) = sub_cpu_32; |
| |
| sycl_device.memcpyDeviceToHost(out_tensor_gpu.data(), out_gpu_data, out_tensor_cpu.size() * sizeof(DataType)); |
| int has_err = 0; |
| for (IndexType i = 0; i < out_tensor_cpu.size(); ++i) { |
| auto exp = out_tensor_cpu(i); |
| auto val = out_tensor_gpu(i); |
| if (val != exp) { |
| std::cout << "#" << i << " got " << val << " but expected " << exp << std::endl; |
| has_err = 1; |
| } |
| } |
| sycl_device.deallocate(out_gpu_data); |
| sycl_device.deallocate(sub_gpu_data); |
| return has_err; |
| } |
| |
| template<typename DataType, typename dev_Selector> void sycl_morphing_test_per_device(dev_Selector s){ |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_simple_slice<DataType, RowMajor, int64_t>(sycl_device); |
| test_simple_slice<DataType, ColMajor, int64_t>(sycl_device); |
| test_simple_reshape<DataType, RowMajor, int64_t>(sycl_device); |
| test_simple_reshape<DataType, ColMajor, int64_t>(sycl_device); |
| test_reshape_as_lvalue<DataType, RowMajor, int64_t>(sycl_device); |
| test_reshape_as_lvalue<DataType, ColMajor, int64_t>(sycl_device); |
| test_strided_slice_write_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_strided_slice_write_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| test_strided_slice_as_rhs_sycl<DataType, ColMajor, int64_t>(sycl_device); |
| test_strided_slice_as_rhs_sycl<DataType, RowMajor, int64_t>(sycl_device); |
| run_eigen<float, RowMajor, long, int>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_morphing_sycl) |
| { |
| for (const auto& device :Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_morphing_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_morphing_test_per_device<float>(device)); |
| } |
| } |