| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| static const int DataLayout = ColMajor; |
| |
| template <typename DataType, typename IndexType> |
| static void test_single_voxel_patch_sycl(const Eigen::SyclDevice& sycl_device) |
| { |
| |
| IndexType sizeDim0 = 4; |
| IndexType sizeDim1 = 2; |
| IndexType sizeDim2 = 3; |
| IndexType sizeDim3 = 5; |
| IndexType sizeDim4 = 7; |
| array<IndexType, 5> tensorColMajorRange = {{sizeDim0, sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; |
| array<IndexType, 5> tensorRowMajorRange = {{sizeDim4, sizeDim3, sizeDim2, sizeDim1, sizeDim0}}; |
| Tensor<DataType, 5, DataLayout,IndexType> tensor_col_major(tensorColMajorRange); |
| Tensor<DataType, 5, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange); |
| tensor_col_major.setRandom(); |
| |
| |
| DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType))); |
| DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 5, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange); |
| TensorMap<Tensor<DataType, 5, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType)); |
| gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout(); |
| |
| |
| // single volume patch: ColMajor |
| array<IndexType, 6> patchColMajorTensorRange={{sizeDim0,1, 1, 1, sizeDim1*sizeDim2*sizeDim3, sizeDim4}}; |
| Tensor<DataType, 6, DataLayout,IndexType> single_voxel_patch_col_major(patchColMajorTensorRange); |
| size_t patchTensorBuffSize =single_voxel_patch_col_major.size()*sizeof(DataType); |
| DataType* gpu_data_single_voxel_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); |
| TensorMap<Tensor<DataType, 6, DataLayout,IndexType>> gpu_single_voxel_patch_col_major(gpu_data_single_voxel_patch_col_major, patchColMajorTensorRange); |
| gpu_single_voxel_patch_col_major.device(sycl_device)=gpu_col_major.extract_volume_patches(1, 1, 1); |
| sycl_device.memcpyDeviceToHost(single_voxel_patch_col_major.data(), gpu_data_single_voxel_patch_col_major, patchTensorBuffSize); |
| |
| |
| VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(0), 4); |
| VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(1), 1); |
| VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(2), 1); |
| VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(3), 1); |
| VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(4), 2 * 3 * 5); |
| VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(5), 7); |
| |
| array<IndexType, 6> patchRowMajorTensorRange={{sizeDim4, sizeDim1*sizeDim2*sizeDim3, 1, 1, 1, sizeDim0}}; |
| Tensor<DataType, 6, RowMajor,IndexType> single_voxel_patch_row_major(patchRowMajorTensorRange); |
| patchTensorBuffSize =single_voxel_patch_row_major.size()*sizeof(DataType); |
| DataType* gpu_data_single_voxel_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); |
| TensorMap<Tensor<DataType, 6, RowMajor,IndexType>> gpu_single_voxel_patch_row_major(gpu_data_single_voxel_patch_row_major, patchRowMajorTensorRange); |
| gpu_single_voxel_patch_row_major.device(sycl_device)=gpu_row_major.extract_volume_patches(1, 1, 1); |
| sycl_device.memcpyDeviceToHost(single_voxel_patch_row_major.data(), gpu_data_single_voxel_patch_row_major, patchTensorBuffSize); |
| |
| VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(0), 7); |
| VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(1), 2 * 3 * 5); |
| VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(2), 1); |
| VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(3), 1); |
| VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(4), 1); |
| VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(5), 4); |
| |
| sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType)); |
| for (IndexType i = 0; i < tensor_col_major.size(); ++i) { |
| VERIFY_IS_EQUAL(tensor_col_major.data()[i], single_voxel_patch_col_major.data()[i]); |
| VERIFY_IS_EQUAL(tensor_row_major.data()[i], single_voxel_patch_row_major.data()[i]); |
| VERIFY_IS_EQUAL(tensor_col_major.data()[i], tensor_row_major.data()[i]); |
| } |
| |
| |
| sycl_device.deallocate(gpu_data_col_major); |
| sycl_device.deallocate(gpu_data_row_major); |
| sycl_device.deallocate(gpu_data_single_voxel_patch_col_major); |
| sycl_device.deallocate(gpu_data_single_voxel_patch_row_major); |
| } |
| |
| template <typename DataType, typename IndexType> |
| static void test_entire_volume_patch_sycl(const Eigen::SyclDevice& sycl_device) |
| { |
| const int depth = 4; |
| const int patch_z = 2; |
| const int patch_y = 3; |
| const int patch_x = 5; |
| const int batch = 7; |
| |
| array<IndexType, 5> tensorColMajorRange = {{depth, patch_z, patch_y, patch_x, batch}}; |
| array<IndexType, 5> tensorRowMajorRange = {{batch, patch_x, patch_y, patch_z, depth}}; |
| Tensor<DataType, 5, DataLayout,IndexType> tensor_col_major(tensorColMajorRange); |
| Tensor<DataType, 5, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange); |
| tensor_col_major.setRandom(); |
| |
| |
| DataType* gpu_data_col_major = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType))); |
| DataType* gpu_data_row_major = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType))); |
| TensorMap<Tensor<DataType, 5, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange); |
| TensorMap<Tensor<DataType, 5, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType)); |
| gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout(); |
| sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType)); |
| |
| |
| // single volume patch: ColMajor |
| array<IndexType, 6> patchColMajorTensorRange={{depth,patch_z, patch_y, patch_x, patch_z*patch_y*patch_x, batch}}; |
| Tensor<DataType, 6, DataLayout,IndexType> entire_volume_patch_col_major(patchColMajorTensorRange); |
| size_t patchTensorBuffSize =entire_volume_patch_col_major.size()*sizeof(DataType); |
| DataType* gpu_data_entire_volume_patch_col_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); |
| TensorMap<Tensor<DataType, 6, DataLayout,IndexType>> gpu_entire_volume_patch_col_major(gpu_data_entire_volume_patch_col_major, patchColMajorTensorRange); |
| gpu_entire_volume_patch_col_major.device(sycl_device)=gpu_col_major.extract_volume_patches(patch_z, patch_y, patch_x); |
| sycl_device.memcpyDeviceToHost(entire_volume_patch_col_major.data(), gpu_data_entire_volume_patch_col_major, patchTensorBuffSize); |
| |
| |
| // Tensor<float, 5> tensor(depth, patch_z, patch_y, patch_x, batch); |
| // tensor.setRandom(); |
| // Tensor<float, 5, RowMajor> tensor_row_major = tensor.swap_layout(); |
| |
| //Tensor<float, 6> entire_volume_patch; |
| //entire_volume_patch = tensor.extract_volume_patches(patch_z, patch_y, patch_x); |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(0), depth); |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(1), patch_z); |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(2), patch_y); |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(3), patch_x); |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(4), patch_z * patch_y * patch_x); |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(5), batch); |
| |
| // Tensor<float, 6, RowMajor> entire_volume_patch_row_major; |
| //entire_volume_patch_row_major = tensor_row_major.extract_volume_patches(patch_z, patch_y, patch_x); |
| |
| array<IndexType, 6> patchRowMajorTensorRange={{batch,patch_z*patch_y*patch_x, patch_x, patch_y, patch_z, depth}}; |
| Tensor<DataType, 6, RowMajor,IndexType> entire_volume_patch_row_major(patchRowMajorTensorRange); |
| patchTensorBuffSize =entire_volume_patch_row_major.size()*sizeof(DataType); |
| DataType* gpu_data_entire_volume_patch_row_major = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); |
| TensorMap<Tensor<DataType, 6, RowMajor,IndexType>> gpu_entire_volume_patch_row_major(gpu_data_entire_volume_patch_row_major, patchRowMajorTensorRange); |
| gpu_entire_volume_patch_row_major.device(sycl_device)=gpu_row_major.extract_volume_patches(patch_z, patch_y, patch_x); |
| sycl_device.memcpyDeviceToHost(entire_volume_patch_row_major.data(), gpu_data_entire_volume_patch_row_major, patchTensorBuffSize); |
| |
| |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(0), batch); |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(1), patch_z * patch_y * patch_x); |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(2), patch_x); |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(3), patch_y); |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(4), patch_z); |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(5), depth); |
| |
| const int dz = patch_z - 1; |
| const int dy = patch_y - 1; |
| const int dx = patch_x - 1; |
| |
| const int forward_pad_z = dz / 2; |
| const int forward_pad_y = dy / 2; |
| const int forward_pad_x = dx / 2; |
| |
| for (int pz = 0; pz < patch_z; pz++) { |
| for (int py = 0; py < patch_y; py++) { |
| for (int px = 0; px < patch_x; px++) { |
| const int patchId = pz + patch_z * (py + px * patch_y); |
| for (int z = 0; z < patch_z; z++) { |
| for (int y = 0; y < patch_y; y++) { |
| for (int x = 0; x < patch_x; x++) { |
| for (int b = 0; b < batch; b++) { |
| for (int d = 0; d < depth; d++) { |
| float expected = 0.0f; |
| float expected_row_major = 0.0f; |
| const int eff_z = z - forward_pad_z + pz; |
| const int eff_y = y - forward_pad_y + py; |
| const int eff_x = x - forward_pad_x + px; |
| if (eff_z >= 0 && eff_y >= 0 && eff_x >= 0 && |
| eff_z < patch_z && eff_y < patch_y && eff_x < patch_x) { |
| expected = tensor_col_major(d, eff_z, eff_y, eff_x, b); |
| expected_row_major = tensor_row_major(b, eff_x, eff_y, eff_z, d); |
| } |
| VERIFY_IS_EQUAL(entire_volume_patch_col_major(d, z, y, x, patchId, b), expected); |
| VERIFY_IS_EQUAL(entire_volume_patch_row_major(b, patchId, x, y, z, d), expected_row_major); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| sycl_device.deallocate(gpu_data_col_major); |
| sycl_device.deallocate(gpu_data_row_major); |
| sycl_device.deallocate(gpu_data_entire_volume_patch_col_major); |
| sycl_device.deallocate(gpu_data_entire_volume_patch_row_major); |
| } |
| |
| |
| |
| template<typename DataType, typename dev_Selector> void sycl_tensor_volume_patch_test_per_device(dev_Selector s){ |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| std::cout << "Running on " << s.template get_info<cl::sycl::info::device::name>() << std::endl; |
| test_single_voxel_patch_sycl<DataType, int64_t>(sycl_device); |
| test_entire_volume_patch_sycl<DataType, int64_t>(sycl_device); |
| } |
| EIGEN_DECLARE_TEST(cxx11_tensor_volume_patch_sycl) |
| { |
| for (const auto& device :Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_tensor_volume_patch_test_per_device<half>(device)); |
| CALL_SUBTEST(sycl_tensor_volume_patch_test_per_device<float>(device)); |
| } |
| } |