blob: ea01d9036bf4b0f0102c9850e0fe269476b8d66d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "camera.h"
#include "gpuhelper.h"
#include <GL/glu.h>
#include "Eigen/LU"
using namespace Eigen;
Camera::Camera() : mViewIsUptodate(false), mProjIsUptodate(false) {
mViewMatrix.setIdentity();
mFovY = M_PI / 3.;
mNearDist = 1.;
mFarDist = 50000.;
mVpX = 0;
mVpY = 0;
setPosition(Vector3f::Constant(100.));
setTarget(Vector3f::Zero());
}
Camera& Camera::operator=(const Camera& other) {
mViewIsUptodate = false;
mProjIsUptodate = false;
mVpX = other.mVpX;
mVpY = other.mVpY;
mVpWidth = other.mVpWidth;
mVpHeight = other.mVpHeight;
mTarget = other.mTarget;
mFovY = other.mFovY;
mNearDist = other.mNearDist;
mFarDist = other.mFarDist;
mViewMatrix = other.mViewMatrix;
mProjectionMatrix = other.mProjectionMatrix;
return *this;
}
Camera::Camera(const Camera& other) { *this = other; }
Camera::~Camera() {}
void Camera::setViewport(uint offsetx, uint offsety, uint width, uint height) {
mVpX = offsetx;
mVpY = offsety;
mVpWidth = width;
mVpHeight = height;
mProjIsUptodate = false;
}
void Camera::setViewport(uint width, uint height) {
mVpWidth = width;
mVpHeight = height;
mProjIsUptodate = false;
}
void Camera::setFovY(float value) {
mFovY = value;
mProjIsUptodate = false;
}
Vector3f Camera::direction(void) const { return -(orientation() * Vector3f::UnitZ()); }
Vector3f Camera::up(void) const { return orientation() * Vector3f::UnitY(); }
Vector3f Camera::right(void) const { return orientation() * Vector3f::UnitX(); }
void Camera::setDirection(const Vector3f& newDirection) {
// TODO implement it computing the rotation between newDirection and current dir ?
Vector3f up = this->up();
Matrix3f camAxes;
camAxes.col(2) = (-newDirection).normalized();
camAxes.col(0) = up.cross(camAxes.col(2)).normalized();
camAxes.col(1) = camAxes.col(2).cross(camAxes.col(0)).normalized();
setOrientation(Quaternionf(camAxes));
mViewIsUptodate = false;
}
void Camera::setTarget(const Vector3f& target) {
mTarget = target;
if (!mTarget.isApprox(position())) {
Vector3f newDirection = mTarget - position();
setDirection(newDirection.normalized());
}
}
void Camera::setPosition(const Vector3f& p) {
mFrame.position = p;
mViewIsUptodate = false;
}
void Camera::setOrientation(const Quaternionf& q) {
mFrame.orientation = q;
mViewIsUptodate = false;
}
void Camera::setFrame(const Frame& f) {
mFrame = f;
mViewIsUptodate = false;
}
void Camera::rotateAroundTarget(const Quaternionf& q) {
Matrix4f mrot, mt, mtm;
// update the transform matrix
updateViewMatrix();
Vector3f t = mViewMatrix * mTarget;
mViewMatrix = Translation3f(t) * q * Translation3f(-t) * mViewMatrix;
Quaternionf qa(mViewMatrix.linear());
qa = qa.conjugate();
setOrientation(qa);
setPosition(-(qa * mViewMatrix.translation()));
mViewIsUptodate = true;
}
void Camera::localRotate(const Quaternionf& q) {
float dist = (position() - mTarget).norm();
setOrientation(orientation() * q);
mTarget = position() + dist * direction();
mViewIsUptodate = false;
}
void Camera::zoom(float d) {
float dist = (position() - mTarget).norm();
if (dist > d) {
setPosition(position() + direction() * d);
mViewIsUptodate = false;
}
}
void Camera::localTranslate(const Vector3f& t) {
Vector3f trans = orientation() * t;
setPosition(position() + trans);
setTarget(mTarget + trans);
mViewIsUptodate = false;
}
void Camera::updateViewMatrix(void) const {
if (!mViewIsUptodate) {
Quaternionf q = orientation().conjugate();
mViewMatrix.linear() = q.toRotationMatrix();
mViewMatrix.translation() = -(mViewMatrix.linear() * position());
mViewIsUptodate = true;
}
}
const Affine3f& Camera::viewMatrix(void) const {
updateViewMatrix();
return mViewMatrix;
}
void Camera::updateProjectionMatrix(void) const {
if (!mProjIsUptodate) {
mProjectionMatrix.setIdentity();
float aspect = float(mVpWidth) / float(mVpHeight);
float theta = mFovY * 0.5;
float range = mFarDist - mNearDist;
float invtan = 1. / tan(theta);
mProjectionMatrix(0, 0) = invtan / aspect;
mProjectionMatrix(1, 1) = invtan;
mProjectionMatrix(2, 2) = -(mNearDist + mFarDist) / range;
mProjectionMatrix(3, 2) = -1;
mProjectionMatrix(2, 3) = -2 * mNearDist * mFarDist / range;
mProjectionMatrix(3, 3) = 0;
mProjIsUptodate = true;
}
}
const Matrix4f& Camera::projectionMatrix(void) const {
updateProjectionMatrix();
return mProjectionMatrix;
}
void Camera::activateGL(void) {
glViewport(vpX(), vpY(), vpWidth(), vpHeight());
gpu.loadMatrix(projectionMatrix(), GL_PROJECTION);
gpu.loadMatrix(viewMatrix().matrix(), GL_MODELVIEW);
}
Vector3f Camera::unProject(const Vector2f& uv, float depth) const {
Matrix4f inv = mViewMatrix.inverse().matrix();
return unProject(uv, depth, inv);
}
Vector3f Camera::unProject(const Vector2f& uv, float depth, const Matrix4f& invModelview) const {
updateViewMatrix();
updateProjectionMatrix();
Vector3f a(2. * uv.x() / float(mVpWidth) - 1., 2. * uv.y() / float(mVpHeight) - 1., 1.);
a.x() *= depth / mProjectionMatrix(0, 0);
a.y() *= depth / mProjectionMatrix(1, 1);
a.z() = -depth;
// FIXME /\/|
Vector4f b = invModelview * Vector4f(a.x(), a.y(), a.z(), 1.);
return Vector3f(b.x(), b.y(), b.z());
}