blob: a433f8d0fc6372c4336204597770660ce195c761 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
/** \ingroup cholesky_Module
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix
*
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* The decomposition uses pivoting to ensure stability, so that L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* \sa MatrixBase::ldlt(), class LLT
*/
/* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType> class LDLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
typedef typename ei_plain_col_type<MatrixType, Index>::type IntColVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LDLT::compute(const MatrixType&).
*/
LDLT() : m_matrix(), m_p(), m_transpositions(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LDLT()
*/
LDLT(Index size) : m_matrix(size, size),
m_p(size),
m_transpositions(size),
m_temporary(size),
m_isInitialized(false) {}
LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_p(matrix.rows()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns the lower triangular matrix L */
inline TriangularView<MatrixType, UnitLower> matrixL(void) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix;
}
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
* see the examples given in the documentation of class FullPivLU.
*/
inline const IntColVectorType& permutationP() const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_p;
}
/** \returns the coefficients of the diagonal matrix D */
inline Diagonal<MatrixType,0> vectorD(void) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix.diagonal();
}
/** \returns true if the matrix is positive (semidefinite) */
inline bool isPositive(void) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == 1;
}
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == -1;
}
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* \note_about_checking_solutions
*
* \sa solveInPlace(), MatrixBase::ldlt()
*/
template<typename Rhs>
inline const ei_solve_retval<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
ei_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
return ei_solve_retval<LDLT, Rhs>(*this, b.derived());
}
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
LDLT& compute(const MatrixType& matrix);
/** \returns the LDLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLDLT() const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
protected:
/** \internal
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
IntColVectorType m_p;
IntColVectorType m_transpositions; // FIXME do we really need to store permanently the transpositions?
TmpMatrixType m_temporary;
Index m_sign;
bool m_isInitialized;
};
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType>
LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
{
ei_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix = a;
m_p.resize(size);
m_transpositions.resize(size);
m_isInitialized = false;
if (size <= 1) {
m_p.setZero();
m_transpositions.setZero();
m_sign = ei_real(a.coeff(0,0))>0 ? 1:-1;
m_isInitialized = true;
return *this;
}
RealScalar cutoff = 0, biggest_in_corner;
// By using a temorary, packet-aligned products are guarenteed. In the LLT
// case this is unnecessary because the diagonal is included and will always
// have optimal alignment.
m_temporary.resize(size);
for (Index j = 0; j < size; ++j)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
biggest_in_corner = m_matrix.diagonal().tail(size-j).cwiseAbs()
.maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += j;
if(j == 0)
{
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails.
cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}
// Finish early if the matrix is not full rank.
if(biggest_in_corner < cutoff)
{
for(Index i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
break;
}
m_transpositions.coeffRef(j) = index_of_biggest_in_corner;
if(j != index_of_biggest_in_corner)
{
m_matrix.row(j).swap(m_matrix.row(index_of_biggest_in_corner));
m_matrix.col(j).swap(m_matrix.col(index_of_biggest_in_corner));
}
if (j == 0) {
m_matrix.row(0) = m_matrix.row(0).conjugate();
m_matrix.col(0).tail(size-1) = m_matrix.row(0).tail(size-1) / m_matrix.coeff(0,0);
continue;
}
RealScalar Djj = ei_real(m_matrix.coeff(j,j) - m_matrix.row(j).head(j).dot(m_matrix.col(j).head(j)));
m_matrix.coeffRef(j,j) = Djj;
Index endSize = size - j - 1;
if (endSize > 0) {
m_temporary.tail(endSize).noalias() = m_matrix.block(j+1,0, endSize, j)
* m_matrix.col(j).head(j).conjugate();
m_matrix.row(j).tail(endSize) = m_matrix.row(j).tail(endSize).conjugate()
- m_temporary.tail(endSize).transpose();
if(ei_abs(Djj) > cutoff)
{
m_matrix.col(j).tail(endSize) = m_matrix.row(j).tail(endSize) / Djj;
}
}
}
// Reverse applied swaps to get P matrix.
for(Index k = 0; k < size; ++k) m_p.coeffRef(k) = k;
for(Index k = size-1; k >= 0; --k) {
std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k)));
}
m_isInitialized = true;
return *this;
}
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<LDLT<_MatrixType>, Rhs>
: ei_solve_retval_base<LDLT<_MatrixType>, Rhs>
{
EIGEN_MAKE_SOLVE_HELPERS(LDLT<_MatrixType>,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dst = rhs();
dec().solveInPlace(dst);
}
};
/** This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType>
template<typename Derived>
bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
ei_assert(size == bAndX.rows());
// z = P b
for(Index i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
// y = L^-1 z
//matrixL().solveInPlace(bAndX);
m_matrix.template triangularView<UnitLower>().solveInPlace(bAndX);
// w = D^-1 y
bAndX = m_matrix.diagonal().asDiagonal().inverse() * bAndX;
// u = L^-T w
m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(bAndX);
// x = P^T u
for (Index i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
return true;
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType LDLT<MatrixType>::reconstructedMatrix() const
{
ei_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
MatrixType res(size,size);
res.setIdentity();
// PI
for(Index i = 0; i < size; ++i) res.row(m_transpositions.coeff(i)).swap(res.row(i));
// L^* P
res = matrixL().adjoint() * res;
// D(L^*P)
res = vectorD().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)
for (Index i = size-1; i >= 0; --i) res.row(m_transpositions.coeff(i)).swap(res.row(i));
return res;
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
return LDLT<PlainObject>(derived());
}
#endif // EIGEN_LDLT_H