| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_DIAGONALPRODUCT_H |
| #define EIGEN_DIAGONALPRODUCT_H |
| |
| template<typename MatrixType, typename DiagonalType, int ProductOrder> |
| struct ei_traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> > |
| : ei_traits<MatrixType> |
| { |
| typedef typename ei_scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| Flags = (HereditaryBits & (unsigned int)(MatrixType::Flags)) |
| | (PacketAccessBit & (unsigned int)(MatrixType::Flags) & (unsigned int)(DiagonalType::DiagonalVectorType::Flags)), |
| CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost |
| }; |
| }; |
| |
| template<typename MatrixType, typename DiagonalType, int ProductOrder> |
| class DiagonalProduct : ei_no_assignment_operator, |
| public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> > |
| { |
| public: |
| |
| typedef MatrixBase<DiagonalProduct> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct) |
| |
| inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal) |
| : m_matrix(matrix), m_diagonal(diagonal) |
| { |
| ei_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols())); |
| } |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| const Scalar coeff(Index row, Index col) const |
| { |
| return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col); |
| } |
| |
| template<int LoadMode> |
| EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const |
| { |
| enum { |
| StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor, |
| InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, |
| DiagonalVectorPacketLoadMode = (LoadMode == Aligned && ((InnerSize%16) == 0)) ? Aligned : Unaligned |
| }; |
| const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col; |
| |
| if((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft) |
| ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)) |
| { |
| return ei_pmul(m_matrix.template packet<LoadMode>(row, col), |
| ei_pset1(m_diagonal.diagonal().coeff(indexInDiagonalVector))); |
| } |
| else |
| { |
| return ei_pmul(m_matrix.template packet<LoadMode>(row, col), |
| m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(indexInDiagonalVector)); |
| } |
| } |
| |
| protected: |
| const typename MatrixType::Nested m_matrix; |
| const typename DiagonalType::Nested m_diagonal; |
| }; |
| |
| /** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal. |
| */ |
| template<typename Derived> |
| template<typename DiagonalDerived> |
| inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight> |
| MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &diagonal) const |
| { |
| return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), diagonal.derived()); |
| } |
| |
| /** \returns the diagonal matrix product of \c *this by the matrix \a matrix. |
| */ |
| template<typename DiagonalDerived> |
| template<typename MatrixDerived> |
| inline const DiagonalProduct<MatrixDerived, DiagonalDerived, OnTheLeft> |
| DiagonalBase<DiagonalDerived>::operator*(const MatrixBase<MatrixDerived> &matrix) const |
| { |
| return DiagonalProduct<MatrixDerived, DiagonalDerived, OnTheLeft>(matrix.derived(), derived()); |
| } |
| |
| |
| #endif // EIGEN_DIAGONALPRODUCT_H |