| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_FUNCTORS_H |
| #define EIGEN_FUNCTORS_H |
| |
| // associative functors: |
| |
| /** \internal |
| * \brief Template functor to compute the sum of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() |
| */ |
| template<typename Scalar> struct ei_scalar_sum_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sum_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_padd(a,b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const |
| { return ei_predux(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_sum_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the product of two scalars |
| * |
| * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() |
| */ |
| template<typename Scalar> struct ei_scalar_product_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_product_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pmul(a,b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const |
| { return ei_predux_mul(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_product_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::MulCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the min of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() |
| */ |
| template<typename Scalar> struct ei_scalar_min_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_min_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pmin(a,b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const |
| { return ei_predux_min(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_min_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the max of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() |
| */ |
| template<typename Scalar> struct ei_scalar_max_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_max_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pmax(a,b); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const |
| { return ei_predux_max(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_max_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the hypot of two scalars |
| * |
| * \sa MatrixBase::stableNorm(), class Redux |
| */ |
| template<typename Scalar> struct ei_scalar_hypot_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_hypot_op) |
| // typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const |
| { |
| Scalar p = std::max(_x, _y); |
| Scalar q = std::min(_x, _y); |
| Scalar qp = q/p; |
| return p * ei_sqrt(Scalar(1) + qp*qp); |
| } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_hypot_op<Scalar> > { |
| enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 }; |
| }; |
| |
| // other binary functors: |
| |
| /** \internal |
| * \brief Template functor to compute the difference of two scalars |
| * |
| * \sa class CwiseBinaryOp, MatrixBase::operator- |
| */ |
| template<typename Scalar> struct ei_scalar_difference_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_difference_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_psub(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_difference_op<Scalar> > { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the quotient of two scalars |
| * |
| * \sa class CwiseBinaryOp, Cwise::operator/() |
| */ |
| template<typename Scalar> struct ei_scalar_quotient_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_quotient_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const |
| { return ei_pdiv(a,b); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient_op<Scalar> > { |
| enum { |
| Cost = 2 * NumTraits<Scalar>::MulCost, |
| PacketAccess = ei_packet_traits<Scalar>::size>1 |
| #if (defined EIGEN_VECTORIZE) |
| && !NumTraits<Scalar>::IsInteger |
| #endif |
| }; |
| }; |
| |
| // unary functors: |
| |
| /** \internal |
| * \brief Template functor to compute the opposite of a scalar |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator- |
| */ |
| template<typename Scalar> struct ei_scalar_opposite_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_opposite_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pnegate(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_opposite_op<Scalar> > |
| { enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the absolute value of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::abs |
| */ |
| template<typename Scalar> struct ei_scalar_abs_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_abs_op) |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pabs(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_abs_op<Scalar> > |
| { |
| enum { |
| Cost = NumTraits<Scalar>::AddCost, |
| PacketAccess = int(ei_packet_traits<Scalar>::size)>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to compute the squared absolute value of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::abs2 |
| */ |
| template<typename Scalar> struct ei_scalar_abs2_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_abs2_op) |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pmul(a,a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_abs2_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = int(ei_packet_traits<Scalar>::size)>1 }; }; |
| |
| /** \internal |
| * \brief Template functor to compute the conjugate of a complex value |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::conjugate() |
| */ |
| template<typename Scalar> struct ei_scalar_conjugate_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_conjugate_op) |
| EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); } |
| template<typename PacketScalar> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return a; } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_conjugate_op<Scalar> > |
| { |
| enum { |
| Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0, |
| PacketAccess = int(ei_packet_traits<Scalar>::size)>1 |
| }; |
| }; |
| |
| /** \internal |
| * \brief Template functor to cast a scalar to another type |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::cast() |
| */ |
| template<typename Scalar, typename NewType> |
| struct ei_scalar_cast_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cast_op) |
| typedef NewType result_type; |
| EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return ei_cast<Scalar, NewType>(a); } |
| }; |
| template<typename Scalar, typename NewType> |
| struct ei_functor_traits<ei_scalar_cast_op<Scalar,NewType> > |
| { enum { Cost = ei_is_same_type<Scalar, NewType>::ret ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to extract the real part of a complex |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::real() |
| */ |
| template<typename Scalar> |
| struct ei_scalar_real_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_real_op) |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_real_op<Scalar> > |
| { enum { Cost = 0, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to extract the imaginary part of a complex |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::imag() |
| */ |
| template<typename Scalar> |
| struct ei_scalar_imag_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_imag_op) |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_imag_op<Scalar> > |
| { enum { Cost = 0, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to extract the real part of a complex as a reference |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::real() |
| */ |
| template<typename Scalar> |
| struct ei_scalar_real_ref_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_real_ref_op) |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return ei_real_ref(*const_cast<Scalar*>(&a)); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_real_ref_op<Scalar> > |
| { enum { Cost = 0, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to extract the imaginary part of a complex as a reference |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::imag() |
| */ |
| template<typename Scalar> |
| struct ei_scalar_imag_ref_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_imag_ref_op) |
| typedef typename NumTraits<Scalar>::Real result_type; |
| EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return ei_imag_ref(*const_cast<Scalar*>(&a)); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_imag_ref_op<Scalar> > |
| { enum { Cost = 0, PacketAccess = false }; }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the exponential of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::exp() |
| */ |
| template<typename Scalar> struct ei_scalar_exp_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_exp_op) |
| inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); } |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| inline Packet packetOp(const Packet& a) const { return ei_pexp(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_exp_op<Scalar> > |
| { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasExp }; }; |
| |
| /** \internal |
| * |
| * \brief Template functor to compute the logarithm of a scalar |
| * |
| * \sa class CwiseUnaryOp, Cwise::log() |
| */ |
| template<typename Scalar> struct ei_scalar_log_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_log_op) |
| inline const Scalar operator() (const Scalar& a) const { return ei_log(a); } |
| typedef typename ei_packet_traits<Scalar>::type Packet; |
| inline Packet packetOp(const Packet& a) const { return ei_plog(a); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_log_op<Scalar> > |
| { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::HasLog }; }; |
| |
| /** \internal |
| * \brief Template functor to multiply a scalar by a fixed other one |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ |
| */ |
| /* NOTE why doing the ei_pset1() in packetOp *is* an optimization ? |
| * indeed it seems better to declare m_other as a PacketScalar and do the ei_pset1() once |
| * in the constructor. However, in practice: |
| * - GCC does not like m_other as a PacketScalar and generate a load every time it needs it |
| * - on the other hand GCC is able to moves the ei_pset1() away the loop :) |
| * - simpler code ;) |
| * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) |
| */ |
| template<typename Scalar> |
| struct ei_scalar_multiple_op { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| // FIXME default copy constructors seems bugged with std::complex<> |
| EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { } |
| EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pmul(a, ei_pset1(m_other)); } |
| typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_multiple_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; }; |
| |
| template<typename Scalar1, typename Scalar2> |
| struct ei_scalar_multiple2_op { |
| typedef typename ei_scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type; |
| EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { } |
| EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } |
| typename ei_makeconst<typename NumTraits<Scalar2>::Nested>::type m_other; |
| }; |
| template<typename Scalar1,typename Scalar2> |
| struct ei_functor_traits<ei_scalar_multiple2_op<Scalar1,Scalar2> > |
| { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; }; |
| |
| template<typename Scalar, bool IsInteger> |
| struct ei_scalar_quotient1_impl { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| // FIXME default copy constructors seems bugged with std::complex<> |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {} |
| EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const |
| { return ei_pmul(a, ei_pset1(m_other)); } |
| const Scalar m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,false> > |
| { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = ei_packet_traits<Scalar>::size>1 }; }; |
| |
| template<typename Scalar> |
| struct ei_scalar_quotient1_impl<Scalar,true> { |
| // FIXME default copy constructors seems bugged with std::complex<> |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} |
| EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } |
| typename ei_makeconst<typename NumTraits<Scalar>::Nested>::type m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient1_impl<Scalar,true> > |
| { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; }; |
| |
| /** \internal |
| * \brief Template functor to divide a scalar by a fixed other one |
| * |
| * This functor is used to implement the quotient of a matrix by |
| * a scalar where the scalar type is not necessarily a floating point type. |
| * |
| * \sa class CwiseUnaryOp, MatrixBase::operator/ |
| */ |
| template<typename Scalar> |
| struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > { |
| EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other) |
| : ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {} |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_quotient1_op<Scalar> > |
| : ei_functor_traits<ei_scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> > |
| {}; |
| |
| // nullary functors |
| |
| template<typename Scalar> |
| struct ei_scalar_constant_op { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { } |
| EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { } |
| template<typename Index> |
| EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } |
| template<typename Index> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(Index, Index = 0) const { return ei_pset1(m_other); } |
| const Scalar m_other; |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_constant_op<Scalar> > |
| { enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; }; |
| |
| template<typename Scalar> struct ei_scalar_identity_op { |
| EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_identity_op) |
| template<typename Index> |
| EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } |
| }; |
| template<typename Scalar> |
| struct ei_functor_traits<ei_scalar_identity_op<Scalar> > |
| { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; }; |
| |
| template <typename Scalar, bool RandomAccess> struct ei_linspaced_op_impl; |
| |
| // linear access for packet ops: |
| // 1) initialization |
| // base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) |
| // 2) each step |
| // base += [size*step, ..., size*step] |
| template <typename Scalar> |
| struct ei_linspaced_op_impl<Scalar,false> |
| { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| ei_linspaced_op_impl(Scalar low, Scalar step) : |
| m_low(low), m_step(step), |
| m_packetStep(ei_pset1(ei_packet_traits<Scalar>::size*step)), |
| m_base(ei_padd(ei_pset1(low),ei_pmul(ei_pset1(step),ei_plset<Scalar>(-ei_packet_traits<Scalar>::size)))) {} |
| |
| template<typename Index> |
| EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } |
| template<typename Index> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(Index) const { return m_base = ei_padd(m_base,m_packetStep); } |
| |
| const Scalar m_low; |
| const Scalar m_step; |
| const PacketScalar m_packetStep; |
| mutable PacketScalar m_base; |
| }; |
| |
| // random access for packet ops: |
| // 1) each step |
| // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) |
| template <typename Scalar> |
| struct ei_linspaced_op_impl<Scalar,true> |
| { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| |
| ei_linspaced_op_impl(Scalar low, Scalar step) : |
| m_low(low), m_step(step), |
| m_lowPacket(ei_pset1(m_low)), m_stepPacket(ei_pset1(m_step)), m_interPacket(ei_plset<Scalar>(0)) {} |
| |
| template<typename Index> |
| EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } |
| template<typename Index> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(Index i) const |
| { return ei_padd(m_lowPacket, ei_pmul(m_stepPacket, ei_padd(ei_pset1<Scalar>(i),m_interPacket))); } |
| |
| const Scalar m_low; |
| const Scalar m_step; |
| const PacketScalar m_lowPacket; |
| const PacketScalar m_stepPacket; |
| const PacketScalar m_interPacket; |
| }; |
| |
| // ----- Linspace functor ---------------------------------------------------------------- |
| |
| // Forward declaration (we default to random access which does not really give |
| // us a speed gain when using packet access but it allows to use the functor in |
| // nested expressions). |
| template <typename Scalar, bool RandomAccess = true> struct ei_linspaced_op; |
| template <typename Scalar, bool RandomAccess> struct ei_functor_traits< ei_linspaced_op<Scalar,RandomAccess> > |
| { enum { Cost = 1, PacketAccess = ei_packet_traits<Scalar>::size>1, IsRepeatable = true }; }; |
| template <typename Scalar, bool RandomAccess> struct ei_linspaced_op |
| { |
| typedef typename ei_packet_traits<Scalar>::type PacketScalar; |
| ei_linspaced_op(Scalar low, Scalar high, int num_steps) : impl(low, (high-low)/(num_steps-1)) {} |
| template<typename Index> |
| EIGEN_STRONG_INLINE const Scalar operator() (Index i, Index = 0) const { return impl(i); } |
| template<typename Index> |
| EIGEN_STRONG_INLINE const PacketScalar packetOp(Index i, Index = 0) const { return impl.packetOp(i); } |
| // This proxy object handles the actual required temporaries, the different |
| // implementations (random vs. sequential access) as well as the piping |
| // correct piping to size 2/4 packet operations. |
| const ei_linspaced_op_impl<Scalar,RandomAccess> impl; |
| }; |
| |
| // allow to add new functors and specializations of ei_functor_traits from outside Eigen. |
| // this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used... |
| #ifdef EIGEN_FUNCTORS_PLUGIN |
| #include EIGEN_FUNCTORS_PLUGIN |
| #endif |
| |
| // all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta |
| // to indicate whether a functor allows linear access, just always answering 'yes' except for |
| // ei_scalar_identity_op. |
| template<typename Functor> struct ei_functor_has_linear_access { enum { ret = 1 }; }; |
| template<typename Scalar> struct ei_functor_has_linear_access<ei_scalar_identity_op<Scalar> > { enum { ret = 0 }; }; |
| |
| // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication |
| // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>. |
| template<typename Functor> struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; }; |
| template<typename Scalar> struct ei_functor_allows_mixing_real_and_complex<ei_scalar_product_op<Scalar> > { enum { ret = 1 }; }; |
| |
| #endif // EIGEN_FUNCTORS_H |