blob: 36626f838e329f6da21272481b96fea61da2e2a6 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PRODUCTBASE_H
#define EIGEN_PRODUCTBASE_H
/** \class ProductBase
*
*/
template<typename Derived, typename _Lhs, typename _Rhs>
struct ei_traits<ProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename ei_cleantype<_Lhs>::type Lhs;
typedef typename ei_cleantype<_Rhs>::type Rhs;
typedef typename ei_scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename ei_promote_storage_type<typename ei_traits<Lhs>::StorageKind,
typename ei_traits<Rhs>::StorageKind>::ret StorageKind;
enum {
RowsAtCompileTime = ei_traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = ei_traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = ei_traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = ei_traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
// Note that EvalBeforeNestingBit and NestByRefBit
// are not used in practice because ei_nested is overloaded for products
CoeffReadCost = 0 // FIXME why is it needed ?
};
};
#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef ProductBase<Derived, Lhs, Rhs > Base; \
EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
typedef typename Base::LhsNested LhsNested; \
typedef typename Base::_LhsNested _LhsNested; \
typedef typename Base::LhsBlasTraits LhsBlasTraits; \
typedef typename Base::ActualLhsType ActualLhsType; \
typedef typename Base::_ActualLhsType _ActualLhsType; \
typedef typename Base::RhsNested RhsNested; \
typedef typename Base::_RhsNested _RhsNested; \
typedef typename Base::RhsBlasTraits RhsBlasTraits; \
typedef typename Base::ActualRhsType ActualRhsType; \
typedef typename Base::_ActualRhsType _ActualRhsType; \
using Base::m_lhs; \
using Base::m_rhs;
template<typename Derived, typename Lhs, typename Rhs>
class ProductBase : public MatrixBase<Derived>
{
public:
typedef MatrixBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
protected:
typedef typename Lhs::Nested LhsNested;
typedef typename ei_cleantype<LhsNested>::type _LhsNested;
typedef ei_blas_traits<_LhsNested> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef typename ei_cleantype<ActualLhsType>::type _ActualLhsType;
typedef typename Rhs::Nested RhsNested;
typedef typename ei_cleantype<RhsNested>::type _RhsNested;
typedef ei_blas_traits<_RhsNested> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename ei_cleantype<ActualRhsType>::type _ActualRhsType;
// Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
public:
typedef typename Base::PlainObject PlainObject;
ProductBase(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
ei_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
inline Index rows() const { return m_lhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
template<typename Dest>
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
template<typename Dest>
inline void addTo(Dest& dst) const { scaleAndAddTo(dst,1); }
template<typename Dest>
inline void subTo(Dest& dst) const { scaleAndAddTo(dst,-1); }
template<typename Dest>
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { derived().scaleAndAddTo(dst,alpha); }
const _LhsNested& lhs() const { return m_lhs; }
const _RhsNested& rhs() const { return m_rhs; }
// Implicit conversion to the nested type (trigger the evaluation of the product)
operator const PlainObject& () const
{
m_result.resize(m_lhs.rows(), m_rhs.cols());
this->evalTo(m_result);
return m_result;
}
const Diagonal<FullyLazyCoeffBaseProductType,0> diagonal() const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
template<int Index>
const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
{ return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
mutable PlainObject m_result;
private:
// discard coeff methods
void coeff(Index,Index) const;
void coeffRef(Index,Index);
void coeff(Index) const;
void coeffRef(Index);
};
// here we need to overload the nested rule for products
// such that the nested type is a const reference to a plain matrix
template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
struct ei_nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
{
typedef PlainObject const& type;
};
template<typename NestedProduct>
class ScaledProduct;
// Note that these two operator* functions are not defined as member
// functions of ProductBase, because, otherwise we would have to
// define all overloads defined in MatrixBase. Furthermore, Using
// "using Base::operator*" would not work with MSVC.
//
// Also note that here we accept any compatible scalar types
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::Scalar x)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
typename ei_enable_if<!ei_is_same_type<typename Derived::Scalar,typename Derived::RealScalar>::ret,
const ScaledProduct<Derived> >::type
operator*(const ProductBase<Derived,Lhs,Rhs>& prod, typename Derived::RealScalar x)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
const ScaledProduct<Derived>
operator*(typename Derived::Scalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename Derived,typename Lhs,typename Rhs>
typename ei_enable_if<!ei_is_same_type<typename Derived::Scalar,typename Derived::RealScalar>::ret,
const ScaledProduct<Derived> >::type
operator*(typename Derived::RealScalar x,const ProductBase<Derived,Lhs,Rhs>& prod)
{ return ScaledProduct<Derived>(prod.derived(), x); }
template<typename NestedProduct>
struct ei_traits<ScaledProduct<NestedProduct> >
: ei_traits<ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested> >
{
typedef typename ei_traits<NestedProduct>::StorageKind StorageKind;
};
template<typename NestedProduct>
class ScaledProduct
: public ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested>
{
public:
typedef ProductBase<ScaledProduct<NestedProduct>,
typename NestedProduct::_LhsNested,
typename NestedProduct::_RhsNested> Base;
typedef typename Base::Scalar Scalar;
// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
ScaledProduct(const NestedProduct& prod, Scalar x)
: Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
template<typename Dest>
inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,m_alpha); }
template<typename Dest>
inline void addTo(Dest& dst) const { scaleAndAddTo(dst,m_alpha); }
template<typename Dest>
inline void subTo(Dest& dst) const { scaleAndAddTo(dst,-m_alpha); }
template<typename Dest>
inline void scaleAndAddTo(Dest& dst,Scalar alpha) const { m_prod.derived().scaleAndAddTo(dst,alpha); }
protected:
const NestedProduct& m_prod;
Scalar m_alpha;
};
/** \internal
* Overloaded to perform an efficient C = (A*B).lazy() */
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{
other.derived().evalTo(derived());
return derived();
}
#endif // EIGEN_PRODUCTBASE_H