blob: 38d942e04f4d8b9d50cdb05ba63881d93da548e1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRANSPOSE_H
#define EIGEN_TRANSPOSE_H
/** \class Transpose
*
* \brief Expression of the transpose of a matrix
*
* \param MatrixType the type of the object of which we are taking the transpose
*
* This class represents an expression of the transpose of a matrix.
* It is the return type of MatrixBase::transpose() and MatrixBase::adjoint()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::transpose(), MatrixBase::adjoint()
*/
template<typename MatrixType>
struct ei_traits<Transpose<MatrixType> > : ei_traits<MatrixType>
{
typedef typename MatrixType::Scalar Scalar;
typedef typename ei_nested<MatrixType>::type MatrixTypeNested;
typedef typename ei_unref<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename ei_traits<MatrixType>::StorageKind StorageKind;
typedef typename ei_traits<MatrixType>::XprKind XprKind;
enum {
RowsAtCompileTime = MatrixType::ColsAtCompileTime,
ColsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
Flags = int(_MatrixTypeNested::Flags & ~NestByRefBit) ^ RowMajorBit,
CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
InnerStrideAtCompileTime = ei_inner_stride_at_compile_time<MatrixType>::ret,
OuterStrideAtCompileTime = ei_outer_stride_at_compile_time<MatrixType>::ret
};
};
template<typename MatrixType, typename StorageKind> class TransposeImpl;
template<typename MatrixType> class Transpose
: public TransposeImpl<MatrixType,typename ei_traits<MatrixType>::StorageKind>
{
public:
typedef typename TransposeImpl<MatrixType,typename ei_traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE_NEW(Transpose)
inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
inline Index rows() const { return m_matrix.cols(); }
inline Index cols() const { return m_matrix.rows(); }
/** \returns the nested expression */
const typename ei_cleantype<typename MatrixType::Nested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename ei_cleantype<typename MatrixType::Nested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
const typename MatrixType::Nested m_matrix;
};
template<typename MatrixType, bool HasDirectAccess = ei_has_direct_access<MatrixType>::ret>
struct ei_TransposeImpl_base
{
typedef typename ei_dense_xpr_base<Transpose<MatrixType> >::type type;
};
template<typename MatrixType>
struct ei_TransposeImpl_base<MatrixType, false>
{
typedef typename ei_dense_xpr_base<Transpose<MatrixType> >::type type;
};
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
: public ei_TransposeImpl_base<MatrixType>::type
{
public:
typedef typename ei_TransposeImpl_base<MatrixType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
inline Scalar* data() { return derived().nestedExpression().data(); }
inline const Scalar* data() const { return derived().nestedExpression().data(); }
inline Scalar& coeffRef(Index row, Index col)
{
return const_cast_derived().nestedExpression().coeffRef(col, row);
}
inline Scalar& coeffRef(Index index)
{
return const_cast_derived().nestedExpression().coeffRef(index);
}
inline const CoeffReturnType coeff(Index row, Index col) const
{
return derived().nestedExpression().coeff(col, row);
}
inline const CoeffReturnType coeff(Index index) const
{
return derived().nestedExpression().coeff(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return derived().nestedExpression().template packet<LoadMode>(col, row);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
const_cast_derived().nestedExpression().template writePacket<LoadMode>(col, row, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return derived().nestedExpression().template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
const_cast_derived().nestedExpression().template writePacket<LoadMode>(index, x);
}
};
/** \returns an expression of the transpose of *this.
*
* Example: \include MatrixBase_transpose.cpp
* Output: \verbinclude MatrixBase_transpose.out
*
* \warning If you want to replace a matrix by its own transpose, do \b NOT do this:
* \code
* m = m.transpose(); // bug!!! caused by aliasing effect
* \endcode
* Instead, use the transposeInPlace() method:
* \code
* m.transposeInPlace();
* \endcode
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
* \code
* m = m.transpose().eval();
* \endcode
*
* \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline Transpose<Derived>
DenseBase<Derived>::transpose()
{
return derived();
}
/** This is the const version of transpose().
*
* Make sure you read the warning for transpose() !
*
* \sa transposeInPlace(), adjoint() */
template<typename Derived>
inline const Transpose<Derived>
DenseBase<Derived>::transpose() const
{
return derived();
}
/** \returns an expression of the adjoint (i.e. conjugate transpose) of *this.
*
* Example: \include MatrixBase_adjoint.cpp
* Output: \verbinclude MatrixBase_adjoint.out
*
* \warning If you want to replace a matrix by its own adjoint, do \b NOT do this:
* \code
* m = m.adjoint(); // bug!!! caused by aliasing effect
* \endcode
* Instead, use the adjointInPlace() method:
* \code
* m.adjointInPlace();
* \endcode
* which gives Eigen good opportunities for optimization, or alternatively you can also do:
* \code
* m = m.adjoint().eval();
* \endcode
*
* \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */
template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
return this->transpose();
}
/***************************************************************************
* "in place" transpose implementation
***************************************************************************/
template<typename MatrixType,
bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
struct ei_inplace_transpose_selector;
template<typename MatrixType>
struct ei_inplace_transpose_selector<MatrixType,true> { // square matrix
static void run(MatrixType& m) {
m.template triangularView<StrictlyUpper>().swap(m.transpose());
}
};
template<typename MatrixType>
struct ei_inplace_transpose_selector<MatrixType,false> { // non square matrix
static void run(MatrixType& m) {
if (m.rows()==m.cols())
m.template triangularView<StrictlyUpper>().swap(m.transpose());
else
m = m.transpose().eval();
}
};
/** This is the "in place" version of transpose(): it replaces \c *this by its own transpose.
* Thus, doing
* \code
* m.transposeInPlace();
* \endcode
* has the same effect on m as doing
* \code
* m = m.transpose().eval();
* \endcode
* and is faster and also safer because in the latter line of code, forgetting the eval() results
* in a bug caused by aliasing.
*
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
* If you just need the transpose of a matrix, use transpose().
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint(), adjointInPlace() */
template<typename Derived>
inline void DenseBase<Derived>::transposeInPlace()
{
ei_inplace_transpose_selector<Derived>::run(derived());
}
/***************************************************************************
* "in place" adjoint implementation
***************************************************************************/
/** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose.
* Thus, doing
* \code
* m.adjointInPlace();
* \endcode
* has the same effect on m as doing
* \code
* m = m.adjoint().eval();
* \endcode
* and is faster and also safer because in the latter line of code, forgetting the eval() results
* in a bug caused by aliasing.
*
* Notice however that this method is only useful if you want to replace a matrix by its own adjoint.
* If you just need the adjoint of a matrix, use adjoint().
*
* \note if the matrix is not square, then \c *this must be a resizable matrix.
*
* \sa transpose(), adjoint(), transposeInPlace() */
template<typename Derived>
inline void MatrixBase<Derived>::adjointInPlace()
{
derived() = adjoint().eval();
}
#ifndef EIGEN_NO_DEBUG
// The following is to detect aliasing problems in most common cases.
template<typename BinOp,typename NestedXpr>
struct ei_blas_traits<SelfCwiseBinaryOp<BinOp,NestedXpr> >
: ei_blas_traits<NestedXpr>
{
typedef SelfCwiseBinaryOp<BinOp,NestedXpr> XprType;
static inline const XprType extract(const XprType& x) { return x; }
};
template<typename Scalar, bool DestIsTranposed, typename OtherDerived>
struct ei_check_transpose_aliasing_selector
{
static bool run(const Scalar* dest, const OtherDerived& src)
{
return (ei_blas_traits<OtherDerived>::IsTransposed != DestIsTranposed) && (dest!=0 && dest==(Scalar*)ei_extract_data(src));
}
};
template<typename Scalar, bool DestIsTranposed, typename BinOp, typename DerivedA, typename DerivedB>
struct ei_check_transpose_aliasing_selector<Scalar,DestIsTranposed,CwiseBinaryOp<BinOp,DerivedA,DerivedB> >
{
static bool run(const Scalar* dest, const CwiseBinaryOp<BinOp,DerivedA,DerivedB>& src)
{
return ((ei_blas_traits<DerivedA>::IsTransposed != DestIsTranposed) && (dest!=0 && dest==(Scalar*)ei_extract_data(src.lhs())))
|| ((ei_blas_traits<DerivedB>::IsTransposed != DestIsTranposed) && (dest!=0 && dest==(Scalar*)ei_extract_data(src.rhs())));
}
};
template<typename Derived>
template<typename OtherDerived>
void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
{
ei_assert((!ei_check_transpose_aliasing_selector<Scalar,ei_blas_traits<Derived>::IsTransposed,OtherDerived>::run(ei_extract_data(derived()), other))
&& "aliasing detected during tranposition, use transposeInPlace() or evaluate the rhs into a temporary using .eval()");
}
#endif
#endif // EIGEN_TRANSPOSE_H