blob: 6b202dbc80ca277a5b7fbeb6b7d009799c174c39 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
/*****************************************************************************
*** Platform checks for aligned malloc functions ***
*****************************************************************************/
#ifndef EIGEN_MEMORY_H
#define EIGEN_MEMORY_H
// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
// http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
// This is true at least since glibc 2.8.
// This leaves the question how to detect 64-bit. According to this document,
// http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
&& defined(__LP64__)
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
#endif
// FreeBSD 6 seems to have 16-byte aligned malloc
// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
#endif
#if defined(__APPLE__) \
|| defined(_WIN64) \
|| EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
|| EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
#define EIGEN_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_MALLOC_ALREADY_ALIGNED 0
#endif
#if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) \
&& (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
#define EIGEN_HAS_POSIX_MEMALIGN 1
#else
#define EIGEN_HAS_POSIX_MEMALIGN 0
#endif
#ifdef EIGEN_VECTORIZE_SSE
#define EIGEN_HAS_MM_MALLOC 1
#else
#define EIGEN_HAS_MM_MALLOC 0
#endif
/*****************************************************************************
*** Implementation of handmade aligned functions ***
*****************************************************************************/
/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
* Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
*/
inline void* ei_handmade_aligned_malloc(size_t size)
{
void *original = std::malloc(size+16);
if (original == 0) return 0;
void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
*(reinterpret_cast<void**>(aligned) - 1) = original;
return aligned;
}
/** \internal Frees memory allocated with ei_handmade_aligned_malloc */
inline void ei_handmade_aligned_free(void *ptr)
{
if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
}
/** \internal
* \brief Reallocates aligned memory.
* Since we know that our handmade version is based on std::realloc
* we can use std::realloc to implement efficient reallocation.
*/
inline void* ei_handmade_aligned_realloc(void* ptr, size_t size, size_t = 0)
{
if (ptr == 0) return ei_handmade_aligned_malloc(size);
void *original = *(reinterpret_cast<void**>(ptr) - 1);
original = std::realloc(original,size+16);
if (original == 0) return 0;
void *aligned = reinterpret_cast<void*>((reinterpret_cast<size_t>(original) & ~(size_t(15))) + 16);
*(reinterpret_cast<void**>(aligned) - 1) = original;
return aligned;
}
/*****************************************************************************
*** Implementation of generic aligned realloc (when no realloc can be used)***
*****************************************************************************/
void* ei_aligned_malloc(size_t size);
void ei_aligned_free(void *ptr);
/** \internal
* \brief Reallocates aligned memory.
* Allows reallocation with aligned ptr types. This implementation will
* always create a new memory chunk and copy the old data.
*/
inline void* ei_generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
{
if (ptr==0)
return ei_aligned_malloc(size);
if (size==0)
{
ei_aligned_free(ptr);
return 0;
}
void* newptr = ei_aligned_malloc(size);
if (newptr == 0)
{
errno = ENOMEM; // according to the standard
return 0;
}
if (ptr != 0)
{
std::memcpy(newptr, ptr, std::min(size,old_size));
ei_aligned_free(ptr);
}
return newptr;
}
/*****************************************************************************
*** Implementation of portable aligned versions of malloc/free/realloc ***
*****************************************************************************/
/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown.
*/
inline void* ei_aligned_malloc(size_t size)
{
#ifdef EIGEN_NO_MALLOC
ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
#endif
void *result;
#if !EIGEN_ALIGN
result = std::malloc(size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
result = std::malloc(size);
#elif EIGEN_HAS_POSIX_MEMALIGN
if(posix_memalign(&result, 16, size)) result = 0;
#elif EIGEN_HAS_MM_MALLOC
result = _mm_malloc(size, 16);
#elif (defined _MSC_VER)
result = _aligned_malloc(size, 16);
#else
result = ei_handmade_aligned_malloc(size);
#endif
#ifdef EIGEN_EXCEPTIONS
if(result == 0)
throw std::bad_alloc();
#endif
return result;
}
/** \internal Frees memory allocated with ei_aligned_malloc. */
inline void ei_aligned_free(void *ptr)
{
#if !EIGEN_ALIGN
std::free(ptr);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
std::free(ptr);
#elif EIGEN_HAS_POSIX_MEMALIGN
std::free(ptr);
#elif EIGEN_HAS_MM_MALLOC
_mm_free(ptr);
#elif defined(_MSC_VER)
_aligned_free(ptr);
#else
ei_handmade_aligned_free(ptr);
#endif
}
/**
* \internal
* \brief Reallocates an aligned block of memory.
* \throws std::bad_alloc if EIGEN_EXCEPTIONS are defined.
**/
inline void* ei_aligned_realloc(void *ptr, size_t new_size, size_t old_size)
{
(void)old_size; // Suppress 'unused variable' warning. Seen in boost tee.
void *result;
#if !EIGEN_ALIGN
result = std::realloc(ptr,new_size);
#elif EIGEN_MALLOC_ALREADY_ALIGNED
result = std::realloc(ptr,new_size);
#elif EIGEN_HAS_POSIX_MEMALIGN
result = ei_generic_aligned_realloc(ptr,new_size,old_size);
#elif EIGEN_HAS_MM_MALLOC
// The defined(_mm_free) is just here to verify that this MSVC version
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
// functions. This may not always be the case and we just try to be safe.
#if defined(_MSC_VER) && defined(_mm_free)
result = _aligned_realloc(ptr,new_size,16);
#else
result = ei_generic_aligned_realloc(ptr,new_size,old_size);
#endif
#elif defined(_MSC_VER)
result = _aligned_realloc(ptr,new_size,16);
#else
result = ei_handmade_aligned_realloc(ptr,new_size,old_size);
#endif
#ifdef EIGEN_EXCEPTIONS
if (result==0 && new_size!=0)
throw std::bad_alloc();
#endif
return result;
}
/*****************************************************************************
*** Implementation of conditionally aligned functions ***
*****************************************************************************/
/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
* On allocation error, the returned pointer is null, and if exceptions are enabled then a std::bad_alloc is thrown.
*/
template<bool Align> inline void* ei_conditional_aligned_malloc(size_t size)
{
return ei_aligned_malloc(size);
}
template<> inline void* ei_conditional_aligned_malloc<false>(size_t size)
{
#ifdef EIGEN_NO_MALLOC
ei_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
#endif
void *result = std::malloc(size);
#ifdef EIGEN_EXCEPTIONS
if(!result) throw std::bad_alloc();
#endif
return result;
}
/** \internal Frees memory allocated with ei_conditional_aligned_malloc */
template<bool Align> inline void ei_conditional_aligned_free(void *ptr)
{
ei_aligned_free(ptr);
}
template<> inline void ei_conditional_aligned_free<false>(void *ptr)
{
std::free(ptr);
}
template<bool Align> inline void* ei_conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
{
return ei_aligned_realloc(ptr, new_size, old_size);
}
template<> inline void* ei_conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
{
return std::realloc(ptr, new_size);
}
/*****************************************************************************
*** Construction/destruction of array elements ***
*****************************************************************************/
/** \internal Constructs the elements of an array.
* The \a size parameter tells on how many objects to call the constructor of T.
*/
template<typename T> inline T* ei_construct_elements_of_array(T *ptr, size_t size)
{
for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
return ptr;
}
/** \internal Destructs the elements of an array.
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T> inline void ei_destruct_elements_of_array(T *ptr, size_t size)
{
// always destruct an array starting from the end.
while(size) ptr[--size].~T();
}
/*****************************************************************************
*** Implementation of aligned new/delete-like functions ***
*****************************************************************************/
/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
* On allocation error, the returned pointer is undefined, but if exceptions are enabled then a std::bad_alloc is thrown.
* The default constructor of T is called.
*/
template<typename T> inline T* ei_aligned_new(size_t size)
{
T *result = reinterpret_cast<T*>(ei_aligned_malloc(sizeof(T)*size));
return ei_construct_elements_of_array(result, size);
}
template<typename T, bool Align> inline T* ei_conditional_aligned_new(size_t size)
{
T *result = reinterpret_cast<T*>(ei_conditional_aligned_malloc<Align>(sizeof(T)*size));
return ei_construct_elements_of_array(result, size);
}
/** \internal Deletes objects constructed with ei_aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T> inline void ei_aligned_delete(T *ptr, size_t size)
{
ei_destruct_elements_of_array<T>(ptr, size);
ei_aligned_free(ptr);
}
/** \internal Deletes objects constructed with ei_conditional_aligned_new
* The \a size parameters tells on how many objects to call the destructor of T.
*/
template<typename T, bool Align> inline void ei_conditional_aligned_delete(T *ptr, size_t size)
{
ei_destruct_elements_of_array<T>(ptr, size);
ei_conditional_aligned_free<Align>(ptr);
}
template<typename T, bool Align> inline T* ei_conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
{
T *result = reinterpret_cast<T*>(ei_conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
if (new_size > old_size)
ei_construct_elements_of_array(result+old_size, new_size-old_size);
return result;
}
/****************************************************************************/
/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
*
* \param array the address of the start of the array
* \param size the size of the array
*
* \note If no element of the array is well aligned, the size of the array is returned. Typically,
* for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
* packet size for the given scalar type is 1, then everything is considered well-aligned.
*
* \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
* power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
* other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
* example with Scalar=double on certain 32-bit platforms, see bug #79.
*
* There is also the variant ei_first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
*/
template<typename Scalar, typename Index>
inline static Index ei_first_aligned(const Scalar* array, Index size)
{
typedef typename ei_packet_traits<Scalar>::type Packet;
enum { PacketSize = ei_packet_traits<Scalar>::size,
PacketAlignedMask = PacketSize-1
};
if(PacketSize==1)
{
// Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
// of the array have the same alignment.
return 0;
}
else if(size_t(array) & (sizeof(Scalar)-1))
{
// There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
// Consequently, no element of the array is well aligned.
return size;
}
else
{
return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
& PacketAlignedMask, size);
}
}
/*****************************************************************************
*** Implementation of runtime stack allocation (falling back to malloc) ***
*****************************************************************************/
/** \internal
* Allocates an aligned buffer of SIZE bytes on the stack if SIZE is smaller than
* EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
* (currently, this is Linux only). Otherwise the memory is allocated on the heap.
* Data allocated with ei_aligned_stack_alloc \b must be freed by calling
* ei_aligned_stack_free(PTR,SIZE).
* \code
* float * data = ei_aligned_stack_alloc(float,array.size());
* // ...
* ei_aligned_stack_free(data,float,array.size());
* \endcode
*/
#if (defined __linux__)
#define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
? alloca(SIZE) \
: ei_aligned_malloc(SIZE)
#define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR)
#elif defined(_MSC_VER)
#define ei_aligned_stack_alloc(SIZE) (SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) \
? _alloca(SIZE) \
: ei_aligned_malloc(SIZE)
#define ei_aligned_stack_free(PTR,SIZE) if(SIZE>EIGEN_STACK_ALLOCATION_LIMIT) ei_aligned_free(PTR)
#else
#define ei_aligned_stack_alloc(SIZE) ei_aligned_malloc(SIZE)
#define ei_aligned_stack_free(PTR,SIZE) ei_aligned_free(PTR)
#endif
#define ei_aligned_stack_new(TYPE,SIZE) ei_construct_elements_of_array(reinterpret_cast<TYPE*>(ei_aligned_stack_alloc(sizeof(TYPE)*SIZE)), SIZE)
#define ei_aligned_stack_delete(TYPE,PTR,SIZE) do {ei_destruct_elements_of_array<TYPE>(PTR, SIZE); \
ei_aligned_stack_free(PTR,sizeof(TYPE)*SIZE);} while(0)
/*****************************************************************************
*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] ***
*****************************************************************************/
#if EIGEN_ALIGN
#ifdef EIGEN_EXCEPTIONS
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
try { return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); } \
catch (...) { return 0; } \
return 0; \
}
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void* operator new(size_t size, const std::nothrow_t&) throw() { \
return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
}
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
void *operator new(size_t size) { \
return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
} \
void *operator new[](size_t size) { \
return Eigen::ei_conditional_aligned_malloc<NeedsToAlign>(size); \
} \
void operator delete(void * ptr) throw() { Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); } \
void operator delete[](void * ptr) throw() { Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); } \
/* in-place new and delete. since (at least afaik) there is no actual */ \
/* memory allocated we can safely let the default implementation handle */ \
/* this particular case. */ \
static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
/* nothrow-new (returns zero instead of std::bad_alloc) */ \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
void operator delete(void *ptr, const std::nothrow_t&) throw() { \
Eigen::ei_conditional_aligned_free<NeedsToAlign>(ptr); \
} \
typedef void ei_operator_new_marker_type;
#else
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
#endif
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0))
/****************************************************************************/
/** \class aligned_allocator
*
* \brief STL compatible allocator to use with with 16 byte aligned types
*
* Example:
* \code
* // Matrix4f requires 16 bytes alignment:
* std::map< int, Matrix4f, std::less<int>, aligned_allocator<Matrix4f> > my_map_mat4;
* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
* std::map< int, Vector3f > my_map_vec3;
* \endcode
*
*/
template<class T>
class aligned_allocator
{
public:
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template<class U>
struct rebind
{
typedef aligned_allocator<U> other;
};
pointer address( reference value ) const
{
return &value;
}
const_pointer address( const_reference value ) const
{
return &value;
}
aligned_allocator() throw()
{
}
aligned_allocator( const aligned_allocator& ) throw()
{
}
template<class U>
aligned_allocator( const aligned_allocator<U>& ) throw()
{
}
~aligned_allocator() throw()
{
}
size_type max_size() const throw()
{
return std::numeric_limits<size_type>::max();
}
pointer allocate( size_type num, const_pointer* hint = 0 )
{
static_cast<void>( hint ); // suppress unused variable warning
return static_cast<pointer>( ei_aligned_malloc( num * sizeof(T) ) );
}
void construct( pointer p, const T& value )
{
::new( p ) T( value );
}
void destroy( pointer p )
{
p->~T();
}
void deallocate( pointer p, size_type /*num*/ )
{
ei_aligned_free( p );
}
bool operator!=(const aligned_allocator<T>& ) const
{ return false; }
bool operator==(const aligned_allocator<T>& ) const
{ return true; }
};
#endif // EIGEN_MEMORY_H