| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_PARTIALLU_H |
| #define EIGEN_PARTIALLU_H |
| |
| /** \ingroup LU_Module |
| * |
| * \class PartialPivLU |
| * |
| * \brief LU decomposition of a matrix with partial pivoting, and related features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
| * |
| * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
| * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
| * is a permutation matrix. |
| * |
| * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
| * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
| * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
| * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
| * |
| * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
| * by class FullPivLU. |
| * |
| * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
| * such as rank computation. If you need these features, use class FullPivLU. |
| * |
| * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
| * in the general case. |
| * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
| * |
| * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
| * |
| * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
| */ |
| template<typename _MatrixType> class PartialPivLU |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef typename ei_traits<MatrixType>::StorageKind StorageKind; |
| typedef typename ei_index<StorageKind>::type Index; |
| typedef typename ei_plain_col_type<MatrixType, Index>::type PermutationVectorType; |
| typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via PartialPivLU::compute(const MatrixType&). |
| */ |
| PartialPivLU(); |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa PartialPivLU() |
| */ |
| PartialPivLU(Index size); |
| |
| /** Constructor. |
| * |
| * \param matrix the matrix of which to compute the LU decomposition. |
| * |
| * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
| * If you need to deal with non-full rank, use class FullPivLU instead. |
| */ |
| PartialPivLU(const MatrixType& matrix); |
| |
| PartialPivLU& compute(const MatrixType& matrix); |
| |
| /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
| * unit-lower-triangular part is L (at least for square matrices; in the non-square |
| * case, special care is needed, see the documentation of class FullPivLU). |
| * |
| * \sa matrixL(), matrixU() |
| */ |
| inline const MatrixType& matrixLU() const |
| { |
| ei_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return m_lu; |
| } |
| |
| /** \returns the permutation matrix P. |
| */ |
| inline const PermutationType& permutationP() const |
| { |
| ei_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return m_p; |
| } |
| |
| /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the LU decomposition. |
| * |
| * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
| * the only requirement in order for the equation to make sense is that |
| * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
| * |
| * \returns the solution. |
| * |
| * Example: \include PartialPivLU_solve.cpp |
| * Output: \verbinclude PartialPivLU_solve.out |
| * |
| * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
| * theoretically exists and is unique regardless of b. |
| * |
| * \sa TriangularView::solve(), inverse(), computeInverse() |
| */ |
| template<typename Rhs> |
| inline const ei_solve_retval<PartialPivLU, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| ei_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return ei_solve_retval<PartialPivLU, Rhs>(*this, b.derived()); |
| } |
| |
| /** \returns the inverse of the matrix of which *this is the LU decomposition. |
| * |
| * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
| * invertibility, use class FullPivLU instead. |
| * |
| * \sa MatrixBase::inverse(), LU::inverse() |
| */ |
| inline const ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const |
| { |
| ei_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> |
| (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); |
| } |
| |
| /** \returns the determinant of the matrix of which |
| * *this is the LU decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the LU decomposition has already been computed. |
| * |
| * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
| * optimized paths. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * |
| * \sa MatrixBase::determinant() |
| */ |
| typename ei_traits<MatrixType>::Scalar determinant() const; |
| |
| MatrixType reconstructedMatrix() const; |
| |
| inline Index rows() const { return m_lu.rows(); } |
| inline Index cols() const { return m_lu.cols(); } |
| |
| protected: |
| MatrixType m_lu; |
| PermutationType m_p; |
| PermutationVectorType m_rowsTranspositions; |
| Index m_det_p; |
| bool m_isInitialized; |
| }; |
| |
| template<typename MatrixType> |
| PartialPivLU<MatrixType>::PartialPivLU() |
| : m_lu(), |
| m_p(), |
| m_rowsTranspositions(), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| } |
| |
| template<typename MatrixType> |
| PartialPivLU<MatrixType>::PartialPivLU(Index size) |
| : m_lu(size, size), |
| m_p(size), |
| m_rowsTranspositions(size), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| } |
| |
| template<typename MatrixType> |
| PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) |
| : m_lu(matrix.rows(), matrix.rows()), |
| m_p(matrix.rows()), |
| m_rowsTranspositions(matrix.rows()), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| /** \internal This is the blocked version of ei_fullpivlu_unblocked() */ |
| template<typename Scalar, int StorageOrder> |
| struct ei_partial_lu_impl |
| { |
| // FIXME add a stride to Map, so that the following mapping becomes easier, |
| // another option would be to create an expression being able to automatically |
| // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly |
| // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, |
| // and Block. |
| typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; |
| typedef Block<MapLU, Dynamic, Dynamic> MatrixType; |
| typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| |
| /** \internal performs the LU decomposition in-place of the matrix \a lu |
| * using an unblocked algorithm. |
| * |
| * In addition, this function returns the row transpositions in the |
| * vector \a row_transpositions which must have a size equal to the number |
| * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| * which returns the actual number of transpositions. |
| * |
| * \returns false if some pivot is exactly zero, in which case the matrix is left with |
| * undefined coefficients (to avoid generating inf/nan values). Returns true |
| * otherwise. |
| */ |
| static bool unblocked_lu(MatrixType& lu, Index* row_transpositions, Index& nb_transpositions) |
| { |
| const Index rows = lu.rows(); |
| const Index size = std::min(lu.rows(),lu.cols()); |
| nb_transpositions = 0; |
| for(Index k = 0; k < size; ++k) |
| { |
| Index row_of_biggest_in_col; |
| RealScalar biggest_in_corner |
| = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); |
| row_of_biggest_in_col += k; |
| |
| if(biggest_in_corner == 0) // the pivot is exactly zero: the matrix is singular |
| { |
| // end quickly, avoid generating inf/nan values. Although in this unblocked_lu case |
| // the result is still valid, there's no need to boast about it because |
| // the blocked_lu code can't guarantee the same. |
| // before exiting, make sure to initialize the still uninitialized row_transpositions |
| // in a sane state without destroying what we already have. |
| for(Index i = k; i < size; i++) |
| row_transpositions[i] = i; |
| return false; |
| } |
| |
| row_transpositions[k] = row_of_biggest_in_col; |
| |
| if(k != row_of_biggest_in_col) |
| { |
| lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
| ++nb_transpositions; |
| } |
| |
| if(k<rows-1) |
| { |
| Index rrows = rows-k-1; |
| Index rsize = size-k-1; |
| lu.col(k).tail(rrows) /= lu.coeff(k,k); |
| lu.bottomRightCorner(rrows,rsize).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rsize); |
| } |
| } |
| return true; |
| } |
| |
| /** \internal performs the LU decomposition in-place of the matrix represented |
| * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
| * recursive, blocked algorithm. |
| * |
| * In addition, this function returns the row transpositions in the |
| * vector \a row_transpositions which must have a size equal to the number |
| * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| * which returns the actual number of transpositions. |
| * |
| * \returns false if some pivot is exactly zero, in which case the matrix is left with |
| * undefined coefficients (to avoid generating inf/nan values). Returns true |
| * otherwise. |
| * |
| * \note This very low level interface using pointers, etc. is to: |
| * 1 - reduce the number of instanciations to the strict minimum |
| * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > |
| */ |
| static bool blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, Index* row_transpositions, Index& nb_transpositions, Index maxBlockSize=256) |
| { |
| MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); |
| MatrixType lu(lu1,0,0,rows,cols); |
| |
| const Index size = std::min(rows,cols); |
| |
| // if the matrix is too small, no blocking: |
| if(size<=16) |
| { |
| return unblocked_lu(lu, row_transpositions, nb_transpositions); |
| } |
| |
| // automatically adjust the number of subdivisions to the size |
| // of the matrix so that there is enough sub blocks: |
| Index blockSize; |
| { |
| blockSize = size/8; |
| blockSize = (blockSize/16)*16; |
| blockSize = std::min(std::max(blockSize,Index(8)), maxBlockSize); |
| } |
| |
| nb_transpositions = 0; |
| for(Index k = 0; k < size; k+=blockSize) |
| { |
| Index bs = std::min(size-k,blockSize); // actual size of the block |
| Index trows = rows - k - bs; // trailing rows |
| Index tsize = size - k - bs; // trailing size |
| |
| // partition the matrix: |
| // A00 | A01 | A02 |
| // lu = A10 | A11 | A12 |
| // A20 | A21 | A22 |
| BlockType A_0(lu,0,0,rows,k); |
| BlockType A_2(lu,0,k+bs,rows,tsize); |
| BlockType A11(lu,k,k,bs,bs); |
| BlockType A12(lu,k,k+bs,bs,tsize); |
| BlockType A21(lu,k+bs,k,trows,bs); |
| BlockType A22(lu,k+bs,k+bs,trows,tsize); |
| |
| Index nb_transpositions_in_panel; |
| // recursively calls the blocked LU algorithm with a very small |
| // blocking size: |
| if(!blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
| row_transpositions+k, nb_transpositions_in_panel, 16)) |
| { |
| // end quickly with undefined coefficients, just avoid generating inf/nan values. |
| // before exiting, make sure to initialize the still uninitialized row_transpositions |
| // in a sane state without destroying what we already have. |
| for(Index i=k; i<size; ++i) |
| row_transpositions[i] = i; |
| return false; |
| } |
| nb_transpositions += nb_transpositions_in_panel; |
| |
| // update permutations and apply them to A10 |
| for(Index i=k; i<k+bs; ++i) |
| { |
| Index piv = (row_transpositions[i] += k); |
| A_0.row(i).swap(A_0.row(piv)); |
| } |
| |
| if(trows) |
| { |
| // apply permutations to A_2 |
| for(Index i=k;i<k+bs; ++i) |
| A_2.row(i).swap(A_2.row(row_transpositions[i])); |
| |
| // A12 = A11^-1 A12 |
| A11.template triangularView<UnitLower>().solveInPlace(A12); |
| |
| A22.noalias() -= A21 * A12; |
| } |
| } |
| return true; |
| } |
| }; |
| |
| /** \internal performs the LU decomposition with partial pivoting in-place. |
| */ |
| template<typename MatrixType, typename IntVector> |
| void ei_partial_lu_inplace(MatrixType& lu, IntVector& row_transpositions, typename MatrixType::Index& nb_transpositions) |
| { |
| ei_assert(lu.cols() == row_transpositions.size()); |
| ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
| |
| ei_partial_lu_impl |
| <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> |
| ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
| } |
| |
| template<typename MatrixType> |
| PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) |
| { |
| m_lu = matrix; |
| |
| ei_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); |
| const Index size = matrix.rows(); |
| |
| m_rowsTranspositions.resize(size); |
| |
| Index nb_transpositions; |
| ei_partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
| m_det_p = (nb_transpositions%2) ? -1 : 1; |
| |
| m_p.setIdentity(size); |
| for(Index k = size-1; k >= 0; --k) |
| m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| template<typename MatrixType> |
| typename ei_traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
| { |
| ei_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return Scalar(m_det_p) * m_lu.diagonal().prod(); |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: P^{-1} L U. |
| * This function is provided for debug purpose. */ |
| template<typename MatrixType> |
| MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
| { |
| ei_assert(m_isInitialized && "LU is not initialized."); |
| // LU |
| MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
| * m_lu.template triangularView<Upper>(); |
| |
| // P^{-1}(LU) |
| res = m_p.inverse() * res; |
| |
| return res; |
| } |
| |
| /***** Implementation of solve() *****************************************************/ |
| |
| template<typename _MatrixType, typename Rhs> |
| struct ei_solve_retval<PartialPivLU<_MatrixType>, Rhs> |
| : ei_solve_retval_base<PartialPivLU<_MatrixType>, Rhs> |
| { |
| EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
| * So we proceed as follows: |
| * Step 1: compute c = Pb. |
| * Step 2: replace c by the solution x to Lx = c. |
| * Step 3: replace c by the solution x to Ux = c. |
| */ |
| |
| ei_assert(rhs().rows() == dec().matrixLU().rows()); |
| |
| // Step 1 |
| dst = dec().permutationP() * rhs(); |
| |
| // Step 2 |
| dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); |
| |
| // Step 3 |
| dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); |
| } |
| }; |
| |
| /******** MatrixBase methods *******/ |
| |
| /** \lu_module |
| * |
| * \return the partial-pivoting LU decomposition of \c *this. |
| * |
| * \sa class PartialPivLU |
| */ |
| template<typename Derived> |
| inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::partialPivLu() const |
| { |
| return PartialPivLU<PlainObject>(eval()); |
| } |
| |
| /** \lu_module |
| * |
| * Synonym of partialPivLu(). |
| * |
| * \return the partial-pivoting LU decomposition of \c *this. |
| * |
| * \sa class PartialPivLU |
| */ |
| template<typename Derived> |
| inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::lu() const |
| { |
| return PartialPivLU<PlainObject>(eval()); |
| } |
| |
| #endif // EIGEN_PARTIALLU_H |