blob: 39c348e5ea24fd6a40da3d71fba311706415bf71 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H
/** \ingroup LU_Module
*
* \class PartialPivLU
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
* is a permutation matrix.
*
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
* matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
* does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
* matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
*
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
* by class FullPivLU.
*
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
* such as rank computation. If you need these features, use class FullPivLU.
*
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
* in the general case.
* On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
*
* \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
*/
template<typename _MatrixType> class PartialPivLU
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename ei_traits<MatrixType>::StorageKind StorageKind;
typedef typename ei_index<StorageKind>::type Index;
typedef typename ei_plain_col_type<MatrixType, Index>::type PermutationVectorType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via PartialPivLU::compute(const MatrixType&).
*/
PartialPivLU();
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa PartialPivLU()
*/
PartialPivLU(Index size);
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class FullPivLU instead.
*/
PartialPivLU(const MatrixType& matrix);
PartialPivLU& compute(const MatrixType& matrix);
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class FullPivLU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_lu;
}
/** \returns the permutation matrix P.
*/
inline const PermutationType& permutationP() const
{
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
return m_p;
}
/** This method returns the solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition.
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
*
* \returns the solution.
*
* Example: \include PartialPivLU_solve.cpp
* Output: \verbinclude PartialPivLU_solve.out
*
* Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
template<typename Rhs>
inline const ei_solve_retval<PartialPivLU, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
return ei_solve_retval<PartialPivLU, Rhs>(*this, b.derived());
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
* invertibility, use class FullPivLU instead.
*
* \sa MatrixBase::inverse(), LU::inverse()
*/
inline const ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const
{
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
return ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType>
(*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
}
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
typename ei_traits<MatrixType>::Scalar determinant() const;
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_lu.rows(); }
inline Index cols() const { return m_lu.cols(); }
protected:
MatrixType m_lu;
PermutationType m_p;
PermutationVectorType m_rowsTranspositions;
Index m_det_p;
bool m_isInitialized;
};
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU()
: m_lu(),
m_p(),
m_rowsTranspositions(),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(Index size)
: m_lu(size, size),
m_p(size),
m_rowsTranspositions(size),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix)
: m_lu(matrix.rows(), matrix.rows()),
m_p(matrix.rows()),
m_rowsTranspositions(matrix.rows()),
m_det_p(0),
m_isInitialized(false)
{
compute(matrix);
}
/** \internal This is the blocked version of ei_fullpivlu_unblocked() */
template<typename Scalar, int StorageOrder>
struct ei_partial_lu_impl
{
// FIXME add a stride to Map, so that the following mapping becomes easier,
// another option would be to create an expression being able to automatically
// warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
// a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
// and Block.
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
/** \internal performs the LU decomposition in-place of the matrix \a lu
* using an unblocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns false if some pivot is exactly zero, in which case the matrix is left with
* undefined coefficients (to avoid generating inf/nan values). Returns true
* otherwise.
*/
static bool unblocked_lu(MatrixType& lu, Index* row_transpositions, Index& nb_transpositions)
{
const Index rows = lu.rows();
const Index size = std::min(lu.rows(),lu.cols());
nb_transpositions = 0;
for(Index k = 0; k < size; ++k)
{
Index row_of_biggest_in_col;
RealScalar biggest_in_corner
= lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col);
row_of_biggest_in_col += k;
if(biggest_in_corner == 0) // the pivot is exactly zero: the matrix is singular
{
// end quickly, avoid generating inf/nan values. Although in this unblocked_lu case
// the result is still valid, there's no need to boast about it because
// the blocked_lu code can't guarantee the same.
// before exiting, make sure to initialize the still uninitialized row_transpositions
// in a sane state without destroying what we already have.
for(Index i = k; i < size; i++)
row_transpositions[i] = i;
return false;
}
row_transpositions[k] = row_of_biggest_in_col;
if(k != row_of_biggest_in_col)
{
lu.row(k).swap(lu.row(row_of_biggest_in_col));
++nb_transpositions;
}
if(k<rows-1)
{
Index rrows = rows-k-1;
Index rsize = size-k-1;
lu.col(k).tail(rrows) /= lu.coeff(k,k);
lu.bottomRightCorner(rrows,rsize).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rsize);
}
}
return true;
}
/** \internal performs the LU decomposition in-place of the matrix represented
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
* recursive, blocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \returns false if some pivot is exactly zero, in which case the matrix is left with
* undefined coefficients (to avoid generating inf/nan values). Returns true
* otherwise.
*
* \note This very low level interface using pointers, etc. is to:
* 1 - reduce the number of instanciations to the strict minimum
* 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
*/
static bool blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, Index* row_transpositions, Index& nb_transpositions, Index maxBlockSize=256)
{
MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
MatrixType lu(lu1,0,0,rows,cols);
const Index size = std::min(rows,cols);
// if the matrix is too small, no blocking:
if(size<=16)
{
return unblocked_lu(lu, row_transpositions, nb_transpositions);
}
// automatically adjust the number of subdivisions to the size
// of the matrix so that there is enough sub blocks:
Index blockSize;
{
blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = std::min(std::max(blockSize,Index(8)), maxBlockSize);
}
nb_transpositions = 0;
for(Index k = 0; k < size; k+=blockSize)
{
Index bs = std::min(size-k,blockSize); // actual size of the block
Index trows = rows - k - bs; // trailing rows
Index tsize = size - k - bs; // trailing size
// partition the matrix:
// A00 | A01 | A02
// lu = A10 | A11 | A12
// A20 | A21 | A22
BlockType A_0(lu,0,0,rows,k);
BlockType A_2(lu,0,k+bs,rows,tsize);
BlockType A11(lu,k,k,bs,bs);
BlockType A12(lu,k,k+bs,bs,tsize);
BlockType A21(lu,k+bs,k,trows,bs);
BlockType A22(lu,k+bs,k+bs,trows,tsize);
Index nb_transpositions_in_panel;
// recursively calls the blocked LU algorithm with a very small
// blocking size:
if(!blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
row_transpositions+k, nb_transpositions_in_panel, 16))
{
// end quickly with undefined coefficients, just avoid generating inf/nan values.
// before exiting, make sure to initialize the still uninitialized row_transpositions
// in a sane state without destroying what we already have.
for(Index i=k; i<size; ++i)
row_transpositions[i] = i;
return false;
}
nb_transpositions += nb_transpositions_in_panel;
// update permutations and apply them to A10
for(Index i=k; i<k+bs; ++i)
{
Index piv = (row_transpositions[i] += k);
A_0.row(i).swap(A_0.row(piv));
}
if(trows)
{
// apply permutations to A_2
for(Index i=k;i<k+bs; ++i)
A_2.row(i).swap(A_2.row(row_transpositions[i]));
// A12 = A11^-1 A12
A11.template triangularView<UnitLower>().solveInPlace(A12);
A22.noalias() -= A21 * A12;
}
}
return true;
}
};
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename IntVector>
void ei_partial_lu_inplace(MatrixType& lu, IntVector& row_transpositions, typename MatrixType::Index& nb_transpositions)
{
ei_assert(lu.cols() == row_transpositions.size());
ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
ei_partial_lu_impl
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
template<typename MatrixType>
PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix)
{
m_lu = matrix;
ei_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
const Index size = matrix.rows();
m_rowsTranspositions.resize(size);
Index nb_transpositions;
ei_partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
m_p.setIdentity(size);
for(Index k = size-1; k >= 0; --k)
m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
m_isInitialized = true;
return *this;
}
template<typename MatrixType>
typename ei_traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
{
ei_assert(m_isInitialized && "PartialPivLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^{-1} L U.
* This function is provided for debug purpose. */
template<typename MatrixType>
MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
{
ei_assert(m_isInitialized && "LU is not initialized.");
// LU
MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
* m_lu.template triangularView<Upper>();
// P^{-1}(LU)
res = m_p.inverse() * res;
return res;
}
/***** Implementation of solve() *****************************************************/
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<PartialPivLU<_MatrixType>, Rhs>
: ei_solve_retval_base<PartialPivLU<_MatrixType>, Rhs>
{
EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
* So we proceed as follows:
* Step 1: compute c = Pb.
* Step 2: replace c by the solution x to Lx = c.
* Step 3: replace c by the solution x to Ux = c.
*/
ei_assert(rhs().rows() == dec().matrixLU().rows());
// Step 1
dst = dec().permutationP() * rhs();
// Step 2
dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst);
// Step 3
dec().matrixLU().template triangularView<Upper>().solveInPlace(dst);
}
};
/******** MatrixBase methods *******/
/** \lu_module
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::partialPivLu() const
{
return PartialPivLU<PlainObject>(eval());
}
/** \lu_module
*
* Synonym of partialPivLu().
*
* \return the partial-pivoting LU decomposition of \c *this.
*
* \sa class PartialPivLU
*/
template<typename Derived>
inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::lu() const
{
return PartialPivLU<PlainObject>(eval());
}
#endif // EIGEN_PARTIALLU_H