blob: fa8f8190871b4a16c764a80278c3b20904eb7c7c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Guillaume Saupin <guillaume.saupin@cea.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SKYLINEINPLACELU_H
#define EIGEN_SKYLINEINPLACELU_H
/** \ingroup Skyline_Module
*
* \class SkylineInplaceLU
*
* \brief Inplace LU decomposition of a skyline matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LU factorization
*
*/
template<typename MatrixType>
class SkylineInplaceLU {
protected:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::Index Index;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
public:
/** Creates a LU object and compute the respective factorization of \a matrix using
* flags \a flags. */
SkylineInplaceLU(MatrixType& matrix, int flags = 0)
: /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0), m_lu(matrix) {
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar > ();
m_lu.IsRowMajor ? computeRowMajor() : compute();
}
/** Sets the relative threshold value used to prune zero coefficients during the decomposition.
*
* Setting a value greater than zero speeds up computation, and yields to an imcomplete
* factorization with fewer non zero coefficients. Such approximate factors are especially
* useful to initialize an iterative solver.
*
* Note that the exact meaning of this parameter might depends on the actual
* backend. Moreover, not all backends support this feature.
*
* \sa precision() */
void setPrecision(RealScalar v) {
m_precision = v;
}
/** \returns the current precision.
*
* \sa setPrecision() */
RealScalar precision() const {
return m_precision;
}
/** Sets the flags. Possible values are:
* - CompleteFactorization
* - IncompleteFactorization
* - MemoryEfficient
* - one of the ordering methods
* - etc...
*
* \sa flags() */
void setFlags(int f) {
m_flags = f;
}
/** \returns the current flags */
int flags() const {
return m_flags;
}
void setOrderingMethod(int m) {
m_flags = m;
}
int orderingMethod() const {
return m_flags;
}
/** Computes/re-computes the LU factorization */
void compute();
void computeRowMajor();
/** \returns the lower triangular matrix L */
//inline const MatrixType& matrixL() const { return m_matrixL; }
/** \returns the upper triangular matrix U */
//inline const MatrixType& matrixU() const { return m_matrixU; }
template<typename BDerived, typename XDerived>
bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
const int transposed = 0) const;
/** \returns true if the factorization succeeded */
inline bool succeeded(void) const {
return m_succeeded;
}
protected:
RealScalar m_precision;
int m_flags;
mutable int m_status;
bool m_succeeded;
MatrixType& m_lu;
};
/** Computes / recomputes the in place LU decomposition of the SkylineInplaceLU.
* using the default algorithm.
*/
template<typename MatrixType>
//template<typename _Scalar>
void SkylineInplaceLU<MatrixType>::compute() {
const size_t rows = m_lu.rows();
const size_t cols = m_lu.cols();
ei_assert(rows == cols && "We do not (yet) support rectangular LU.");
ei_assert(!m_lu.IsRowMajor && "LU decomposition does not work with rowMajor Storage");
for (Index row = 0; row < rows; row++) {
const double pivot = m_lu.coeffDiag(row);
//Lower matrix Columns update
const Index& col = row;
for (typename MatrixType::InnerLowerIterator lIt(m_lu, col); lIt; ++lIt) {
lIt.valueRef() /= pivot;
}
//Upper matrix update -> contiguous memory access
typename MatrixType::InnerLowerIterator lIt(m_lu, col);
for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
const double coef = lIt.value();
uItPivot += (rrow - row - 1);
//update upper part -> contiguous memory access
for (++uItPivot; uIt && uItPivot;) {
uIt.valueRef() -= uItPivot.value() * coef;
++uIt;
++uItPivot;
}
++lIt;
}
//Upper matrix update -> non contiguous memory access
typename MatrixType::InnerLowerIterator lIt3(m_lu, col);
for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
const double coef = lIt3.value();
//update lower part -> non contiguous memory access
for (Index i = 0; i < rrow - row - 1; i++) {
m_lu.coeffRefLower(rrow, row + i + 1) -= uItPivot.value() * coef;
++uItPivot;
}
++lIt3;
}
//update diag -> contiguous
typename MatrixType::InnerLowerIterator lIt2(m_lu, col);
for (Index rrow = row + 1; rrow < m_lu.rows(); rrow++) {
typename MatrixType::InnerUpperIterator uItPivot(m_lu, row);
typename MatrixType::InnerUpperIterator uIt(m_lu, rrow);
const double coef = lIt2.value();
uItPivot += (rrow - row - 1);
m_lu.coeffRefDiag(rrow) -= uItPivot.value() * coef;
++lIt2;
}
}
}
template<typename MatrixType>
void SkylineInplaceLU<MatrixType>::computeRowMajor() {
const size_t rows = m_lu.rows();
const size_t cols = m_lu.cols();
ei_assert(rows == cols && "We do not (yet) support rectangular LU.");
ei_assert(m_lu.IsRowMajor && "You're trying to apply rowMajor decomposition on a ColMajor matrix !");
for (Index row = 0; row < rows; row++) {
typename MatrixType::InnerLowerIterator llIt(m_lu, row);
for (Index col = llIt.col(); col < row; col++) {
if (m_lu.coeffExistLower(row, col)) {
const double diag = m_lu.coeffDiag(col);
typename MatrixType::InnerLowerIterator lIt(m_lu, row);
typename MatrixType::InnerUpperIterator uIt(m_lu, col);
const Index offset = lIt.col() - uIt.row();
Index stop = offset > 0 ? col - lIt.col() : col - uIt.row();
//#define VECTORIZE
#ifdef VECTORIZE
Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
Scalar newCoeff = m_lu.coeffLower(row, col) - rowVal.dot(colVal);
#else
if (offset > 0) //Skip zero value of lIt
uIt += offset;
else //Skip zero values of uIt
lIt += -offset;
Scalar newCoeff = m_lu.coeffLower(row, col);
for (Index k = 0; k < stop; ++k) {
const Scalar tmp = newCoeff;
newCoeff = tmp - lIt.value() * uIt.value();
++lIt;
++uIt;
}
#endif
m_lu.coeffRefLower(row, col) = newCoeff / diag;
}
}
//Upper matrix update
const Index col = row;
typename MatrixType::InnerUpperIterator uuIt(m_lu, col);
for (Index rrow = uuIt.row(); rrow < col; rrow++) {
typename MatrixType::InnerLowerIterator lIt(m_lu, rrow);
typename MatrixType::InnerUpperIterator uIt(m_lu, col);
const Index offset = lIt.col() - uIt.row();
Index stop = offset > 0 ? rrow - lIt.col() : rrow - uIt.row();
#ifdef VECTORIZE
Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
Scalar newCoeff = m_lu.coeffUpper(rrow, col) - rowVal.dot(colVal);
#else
if (offset > 0) //Skip zero value of lIt
uIt += offset;
else //Skip zero values of uIt
lIt += -offset;
Scalar newCoeff = m_lu.coeffUpper(rrow, col);
for (Index k = 0; k < stop; ++k) {
const Scalar tmp = newCoeff;
newCoeff = tmp - lIt.value() * uIt.value();
++lIt;
++uIt;
}
#endif
m_lu.coeffRefUpper(rrow, col) = newCoeff;
}
//Diag matrix update
typename MatrixType::InnerLowerIterator lIt(m_lu, row);
typename MatrixType::InnerUpperIterator uIt(m_lu, row);
const Index offset = lIt.col() - uIt.row();
Index stop = offset > 0 ? lIt.size() : uIt.size();
#ifdef VECTORIZE
Map<VectorXd > rowVal(lIt.valuePtr() + (offset > 0 ? 0 : -offset), stop);
Map<VectorXd > colVal(uIt.valuePtr() + (offset > 0 ? offset : 0), stop);
Scalar newCoeff = m_lu.coeffDiag(row) - rowVal.dot(colVal);
#else
if (offset > 0) //Skip zero value of lIt
uIt += offset;
else //Skip zero values of uIt
lIt += -offset;
Scalar newCoeff = m_lu.coeffDiag(row);
for (Index k = 0; k < stop; ++k) {
const Scalar tmp = newCoeff;
newCoeff = tmp - lIt.value() * uIt.value();
++lIt;
++uIt;
}
#endif
m_lu.coeffRefDiag(row) = newCoeff;
}
}
/** Computes *x = U^-1 L^-1 b
*
* If \a transpose is set to SvTranspose or SvAdjoint, the solution
* of the transposed/adjoint system is computed instead.
*
* Not all backends implement the solution of the transposed or
* adjoint system.
*/
template<typename MatrixType>
template<typename BDerived, typename XDerived>
bool SkylineInplaceLU<MatrixType>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed) const {
const size_t rows = m_lu.rows();
const size_t cols = m_lu.cols();
for (Index row = 0; row < rows; row++) {
x->coeffRef(row) = b.coeff(row);
Scalar newVal = x->coeff(row);
typename MatrixType::InnerLowerIterator lIt(m_lu, row);
Index col = lIt.col();
while (lIt.col() < row) {
newVal -= x->coeff(col++) * lIt.value();
++lIt;
}
x->coeffRef(row) = newVal;
}
for (Index col = rows - 1; col > 0; col--) {
x->coeffRef(col) = x->coeff(col) / m_lu.coeffDiag(col);
const Scalar x_col = x->coeff(col);
typename MatrixType::InnerUpperIterator uIt(m_lu, col);
uIt += uIt.size()-1;
while (uIt) {
x->coeffRef(uIt.row()) -= x_col * uIt.value();
//TODO : introduce --operator
uIt += -1;
}
}
x->coeffRef(0) = x->coeff(0) / m_lu.coeffDiag(0);
return true;
}
#endif // EIGEN_SKYLINELU_H