| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/Polynomials> |
| #include <iostream> |
| #include <algorithm> |
| |
| #ifdef HAS_GSL |
| #include "gsl_helper.h" |
| #endif |
| |
| using namespace std; |
| |
| template<int Size> |
| struct ei_increment_if_fixed_size |
| { |
| enum { |
| ret = (Size == Dynamic) ? Dynamic : Size+1 |
| }; |
| }; |
| |
| |
| |
| |
| template<int Deg, typename POLYNOMIAL, typename SOLVER> |
| bool aux_evalSolver( const POLYNOMIAL& pols, SOLVER& psolve ) |
| { |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| |
| typedef typename SOLVER::RootsType RootsType; |
| typedef Matrix<Scalar,Deg,1> EvalRootsType; |
| |
| const int deg = pols.size()-1; |
| |
| psolve.compute( pols ); |
| const RootsType& roots( psolve.roots() ); |
| EvalRootsType evr( deg ); |
| for( int i=0; i<roots.size(); ++i ){ |
| evr[i] = std::abs( poly_eval( pols, roots[i] ) ); } |
| |
| bool evalToZero = evr.isZero( test_precision<Scalar>() ); |
| if( !evalToZero ) |
| { |
| cerr << "WRONG root: " << endl; |
| cerr << "Polynomial: " << pols.transpose() << endl; |
| cerr << "Roots found: " << roots.transpose() << endl; |
| cerr << "Abs value of the polynomial at the roots: " << evr.transpose() << endl; |
| cerr << endl; |
| } |
| |
| #ifdef HAS_GSL |
| if (ei_is_same_type< Scalar, double>::ret) |
| { |
| typedef GslTraits<Scalar> Gsl; |
| RootsType gslRoots(deg); |
| Gsl::eigen_poly_solve( pols, gslRoots ); |
| EvalRootsType gslEvr( deg ); |
| for( int i=0; i<gslRoots.size(); ++i ) |
| { |
| gslEvr[i] = std::abs( poly_eval( pols, gslRoots[i] ) ); |
| } |
| bool gslEvalToZero = gslEvr.isZero( test_precision<Scalar>() ); |
| if( !evalToZero ) |
| { |
| if( !gslEvalToZero ){ |
| cerr << "GSL also failed" << endl; } |
| else{ |
| cerr << "GSL did NOT failed" << endl; } |
| cerr << "GSL roots found: " << gslRoots.transpose() << endl; |
| cerr << "Abs value of the polynomial at the GSL roots: " << gslEvr.transpose() << endl; |
| cerr << endl; |
| } |
| } |
| #endif //< HAS_GSL |
| |
| |
| std::vector<Scalar> rootModuli( roots.size() ); |
| Map< EvalRootsType > aux( &rootModuli[0], roots.size() ); |
| aux = roots.array().abs(); |
| std::sort( rootModuli.begin(), rootModuli.end() ); |
| bool distinctModuli=true; |
| for( size_t i=1; i<rootModuli.size() && distinctModuli; ++i ) |
| { |
| if( ei_isApprox( rootModuli[i], rootModuli[i-1] ) ){ |
| distinctModuli = false; } |
| } |
| VERIFY( evalToZero || !distinctModuli ); |
| |
| return distinctModuli; |
| } |
| |
| |
| |
| |
| |
| |
| |
| template<int Deg, typename POLYNOMIAL> |
| void evalSolver( const POLYNOMIAL& pols ) |
| { |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| |
| typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType; |
| |
| PolynomialSolverType psolve; |
| aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ); |
| } |
| |
| |
| |
| |
| template< int Deg, typename POLYNOMIAL, typename ROOTS, typename REAL_ROOTS > |
| void evalSolverSugarFunction( const POLYNOMIAL& pols, const ROOTS& roots, const REAL_ROOTS& real_roots ) |
| { |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| |
| typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType; |
| |
| PolynomialSolverType psolve; |
| if( aux_evalSolver<Deg, POLYNOMIAL, PolynomialSolverType>( pols, psolve ) ) |
| { |
| //It is supposed that |
| // 1) the roots found are correct |
| // 2) the roots have distinct moduli |
| |
| typedef typename POLYNOMIAL::Scalar Scalar; |
| typedef typename REAL_ROOTS::Scalar Real; |
| |
| typedef PolynomialSolver<Scalar, Deg > PolynomialSolverType; |
| typedef typename PolynomialSolverType::RootsType RootsType; |
| typedef Matrix<Scalar,Deg,1> EvalRootsType; |
| |
| //Test realRoots |
| std::vector< Real > calc_realRoots; |
| psolve.realRoots( calc_realRoots ); |
| VERIFY( calc_realRoots.size() == (size_t)real_roots.size() ); |
| |
| const Scalar psPrec = ei_sqrt( test_precision<Scalar>() ); |
| |
| for( size_t i=0; i<calc_realRoots.size(); ++i ) |
| { |
| bool found = false; |
| for( size_t j=0; j<calc_realRoots.size()&& !found; ++j ) |
| { |
| if( ei_isApprox( calc_realRoots[i], real_roots[j] ), psPrec ){ |
| found = true; } |
| } |
| VERIFY( found ); |
| } |
| |
| //Test greatestRoot |
| VERIFY( ei_isApprox( roots.array().abs().maxCoeff(), |
| ei_abs( psolve.greatestRoot() ), psPrec ) ); |
| |
| //Test smallestRoot |
| VERIFY( ei_isApprox( roots.array().abs().minCoeff(), |
| ei_abs( psolve.smallestRoot() ), psPrec ) ); |
| |
| bool hasRealRoot; |
| //Test absGreatestRealRoot |
| Real r = psolve.absGreatestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( ei_isApprox( real_roots.array().abs().maxCoeff(), ei_abs(r), psPrec ) ); } |
| |
| //Test absSmallestRealRoot |
| r = psolve.absSmallestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( ei_isApprox( real_roots.array().abs().minCoeff(), ei_abs( r ), psPrec ) ); } |
| |
| //Test greatestRealRoot |
| r = psolve.greatestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( ei_isApprox( real_roots.array().maxCoeff(), r, psPrec ) ); } |
| |
| //Test smallestRealRoot |
| r = psolve.smallestRealRoot( hasRealRoot ); |
| VERIFY( hasRealRoot == (real_roots.size() > 0 ) ); |
| if( hasRealRoot ){ |
| VERIFY( ei_isApprox( real_roots.array().minCoeff(), r, psPrec ) ); } |
| } |
| } |
| |
| |
| template<typename _Scalar, int _Deg> |
| void polynomialsolver(int deg) |
| { |
| typedef ei_increment_if_fixed_size<_Deg> Dim; |
| typedef Matrix<_Scalar,Dim::ret,1> PolynomialType; |
| typedef Matrix<_Scalar,_Deg,1> EvalRootsType; |
| |
| cout << "Standard cases" << endl; |
| PolynomialType pols = PolynomialType::Random(deg+1); |
| evalSolver<_Deg,PolynomialType>( pols ); |
| |
| cout << "Hard cases" << endl; |
| _Scalar multipleRoot = ei_random<_Scalar>(); |
| EvalRootsType allRoots = EvalRootsType::Constant(deg,multipleRoot); |
| roots_to_monicPolynomial( allRoots, pols ); |
| evalSolver<_Deg,PolynomialType>( pols ); |
| |
| cout << "Test sugar" << endl; |
| EvalRootsType realRoots = EvalRootsType::Random(deg); |
| roots_to_monicPolynomial( realRoots, pols ); |
| evalSolverSugarFunction<_Deg>( |
| pols, |
| realRoots.template cast < |
| std::complex< |
| typename NumTraits<_Scalar>::Real |
| > |
| >(), |
| realRoots ); |
| } |
| |
| |
| template<typename _Scalar> void polynomialsolver_scalar() |
| { |
| CALL_SUBTEST_1( (polynomialsolver<_Scalar,1>(1)) ); |
| CALL_SUBTEST_2( (polynomialsolver<_Scalar,2>(2)) ); |
| CALL_SUBTEST_3( (polynomialsolver<_Scalar,3>(3)) ); |
| CALL_SUBTEST_4( (polynomialsolver<_Scalar,4>(4)) ); |
| CALL_SUBTEST_5( (polynomialsolver<_Scalar,5>(5)) ); |
| CALL_SUBTEST_6( (polynomialsolver<_Scalar,6>(6)) ); |
| CALL_SUBTEST_7( (polynomialsolver<_Scalar,7>(7)) ); |
| CALL_SUBTEST_8( (polynomialsolver<_Scalar,8>(8)) ); |
| |
| CALL_SUBTEST_9( (polynomialsolver<_Scalar,Dynamic>( |
| ei_random<int>(9,45) |
| )) ); |
| } |
| |
| void test_polynomialsolver() |
| { |
| for(int i = 0; i < g_repeat; i++) |
| { |
| polynomialsolver_scalar<double>(); |
| polynomialsolver_scalar<float>(); |
| } |
| } |