| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <bool IsInteger> |
| struct adjoint_specific; |
| |
| template <> |
| struct adjoint_specific<true> { |
| template <typename Vec, typename Mat, typename Scalar> |
| static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { |
| VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), |
| numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0)); |
| VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), 0)); |
| |
| // check compatibility of dot and adjoint |
| VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0)); |
| } |
| }; |
| |
| template <> |
| struct adjoint_specific<false> { |
| template <typename Vec, typename Mat, typename Scalar> |
| static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| using std::abs; |
| |
| RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(), v3.norm()); |
| VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), |
| numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref)); |
| VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), ref)); |
| |
| VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); |
| // check normalized() and normalize() |
| VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); |
| v3 = v1; |
| v3.normalize(); |
| VERIFY_IS_APPROX(v1, v1.norm() * v3); |
| VERIFY_IS_APPROX(v3, v1.normalized()); |
| VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); |
| |
| // check null inputs |
| VERIFY_IS_APPROX((v1 * 0).normalized(), (v1 * 0)); |
| #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE) |
| RealScalar very_small = (std::numeric_limits<RealScalar>::min)(); |
| VERIFY(numext::is_exactly_zero((v1 * very_small).norm())); |
| VERIFY_IS_APPROX((v1 * very_small).normalized(), (v1 * very_small)); |
| v3 = v1 * very_small; |
| v3.normalize(); |
| VERIFY_IS_APPROX(v3, (v1 * very_small)); |
| #endif |
| |
| // check compatibility of dot and adjoint |
| ref = NumTraits<Scalar>::IsInteger ? 0 |
| : (std::max)((std::max)(v1.norm(), v2.norm()), |
| (std::max)((square * v2).norm(), (square.adjoint() * v1).norm())); |
| VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, |
| test_precision<Scalar>())); |
| |
| // check that Random().normalized() works: tricky as the random xpr must be evaluated by |
| // normalized() in order to produce a consistent result. |
| VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1)); |
| } |
| }; |
| |
| template <typename MatrixType, typename Scalar = typename MatrixType::Scalar> |
| MatrixType RandomMatrix(Index rows, Index cols, Scalar min, Scalar max) { |
| MatrixType M = MatrixType(rows, cols); |
| for (Index i = 0; i < rows; ++i) { |
| for (Index j = 0; j < cols; ++j) { |
| M(i, j) = Eigen::internal::random<Scalar>(min, max); |
| } |
| } |
| return M; |
| } |
| |
| template <typename MatrixType> |
| void adjoint(const MatrixType& m) { |
| /* this test covers the following files: |
| Transpose.h Conjugate.h Dot.h |
| */ |
| using std::abs; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| const Index PacketSize = internal::packet_traits<Scalar>::size; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // Avoid integer overflow by limiting input values. |
| RealScalar rmin = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? NumTraits<Scalar>::IsSigned ? -100 : 0 : -1); |
| RealScalar rmax = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? 100 : 1); |
| |
| MatrixType m1 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), |
| m2 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), m3(rows, cols), |
| square = RandomMatrix<SquareMatrixType>(rows, rows, rmin, rmax); |
| VectorType v1 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), v2 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), |
| v3 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), vzero = VectorType::Zero(rows); |
| |
| Scalar s1 = internal::random<Scalar>(rmin, rmax), s2 = internal::random<Scalar>(rmin, rmax); |
| |
| // check basic compatibility of adjoint, transpose, conjugate |
| VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); |
| VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); |
| |
| // check multiplicative behavior |
| VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); |
| VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint()); |
| |
| // check basic properties of dot, squaredNorm |
| VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1)); |
| VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm()); |
| |
| adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1)); |
| |
| // like in testBasicStuff, test operator() to check const-qualification |
| Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); |
| VERIFY_IS_APPROX(m1.conjugate()(r, c), numext::conj(m1(r, c))); |
| VERIFY_IS_APPROX(m1.adjoint()(c, r), numext::conj(m1(r, c))); |
| |
| // check inplace transpose |
| m3 = m1; |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1.transpose()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1); |
| |
| if (PacketSize < m3.rows() && PacketSize < m3.cols()) { |
| m3 = m1; |
| Index i = internal::random<Index>(0, m3.rows() - PacketSize); |
| Index j = internal::random<Index>(0, m3.cols() - PacketSize); |
| m3.template block<PacketSize, PacketSize>(i, j).transposeInPlace(); |
| VERIFY_IS_APPROX((m3.template block<PacketSize, PacketSize>(i, j)), |
| (m1.template block<PacketSize, PacketSize>(i, j).transpose())); |
| m3.template block<PacketSize, PacketSize>(i, j).transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1); |
| } |
| |
| // check inplace adjoint |
| m3 = m1; |
| m3.adjointInPlace(); |
| VERIFY_IS_APPROX(m3, m1.adjoint()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3, m1.conjugate()); |
| |
| // check mixed dot product |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| RealVectorType rv1 = RandomMatrix<RealVectorType>(rows, 1, rmin, rmax); |
| |
| VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); |
| VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); |
| |
| VERIFY(is_same_type(m1, m1.template conjugateIf<false>())); |
| VERIFY(is_same_type(m1.conjugate(), m1.template conjugateIf<true>())); |
| } |
| |
| template <int> |
| void adjoint_extra() { |
| MatrixXcf a(10, 10), b(10, 10); |
| VERIFY_RAISES_ASSERT(a = a.transpose()); |
| VERIFY_RAISES_ASSERT(a = a.transpose() + b); |
| VERIFY_RAISES_ASSERT(a = b + a.transpose()); |
| VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); |
| VERIFY_RAISES_ASSERT(a = a.adjoint()); |
| VERIFY_RAISES_ASSERT(a = a.adjoint() + b); |
| VERIFY_RAISES_ASSERT(a = b + a.adjoint()); |
| |
| // no assertion should be triggered for these cases: |
| a.transpose() = a.transpose(); |
| a.transpose() += a.transpose(); |
| a.transpose() += a.transpose() + b; |
| a.transpose() = a.adjoint(); |
| a.transpose() += a.adjoint(); |
| a.transpose() += a.adjoint() + b; |
| |
| // regression tests for check_for_aliasing |
| MatrixXd c(10, 10); |
| c = 1.0 * MatrixXd::Ones(10, 10) + c; |
| c = MatrixXd::Ones(10, 10) * 1.0 + c; |
| c = c + MatrixXd::Ones(10, 10).cwiseProduct(MatrixXd::Zero(10, 10)); |
| c = MatrixXd::Ones(10, 10) * MatrixXd::Zero(10, 10); |
| |
| // regression for bug 1646 |
| for (int j = 0; j < 10; ++j) { |
| c.col(j).head(j) = c.row(j).head(j); |
| } |
| |
| for (int j = 0; j < 10; ++j) { |
| c.col(j) = c.row(j); |
| } |
| |
| a.conservativeResize(1, 1); |
| a = a.transpose(); |
| |
| a.conservativeResize(0, 0); |
| a = a.transpose(); |
| } |
| |
| EIGEN_DECLARE_TEST(adjoint) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(adjoint(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(adjoint(Matrix3d())); |
| CALL_SUBTEST_3(adjoint(Matrix4f())); |
| |
| CALL_SUBTEST_4(adjoint(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_5(adjoint( |
| MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_6(adjoint( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| |
| // Complement for 128 bits vectorization: |
| CALL_SUBTEST_8(adjoint(Matrix2d())); |
| CALL_SUBTEST_9(adjoint(Matrix<int, 4, 4>())); |
| |
| // 256 bits vectorization: |
| CALL_SUBTEST_10(adjoint(Matrix<float, 8, 8>())); |
| CALL_SUBTEST_11(adjoint(Matrix<double, 4, 4>())); |
| CALL_SUBTEST_12(adjoint(Matrix<int, 8, 8>())); |
| } |
| // test a large static matrix only once |
| CALL_SUBTEST_7(adjoint(Matrix<float, 100, 100>())); |
| |
| CALL_SUBTEST_13(adjoint_extra<0>()); |
| } |