blob: 6366476948e2947a22fc35f0bab6e36dfab303fd [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <bool IsInteger>
struct adjoint_specific;
template <>
struct adjoint_specific<true> {
template <typename Vec, typename Mat, typename Scalar>
static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),
numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), 0));
// check compatibility of dot and adjoint
VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
}
};
template <>
struct adjoint_specific<false> {
template <typename Vec, typename Mat, typename Scalar>
static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
typedef typename NumTraits<Scalar>::Real RealScalar;
using std::abs;
RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(), v3.norm());
VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3),
numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1 * v3.dot(v1) + s2 * v3.dot(v2), ref));
VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
// check normalized() and normalize()
VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
v3 = v1;
v3.normalize();
VERIFY_IS_APPROX(v1, v1.norm() * v3);
VERIFY_IS_APPROX(v3, v1.normalized());
VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
// check null inputs
VERIFY_IS_APPROX((v1 * 0).normalized(), (v1 * 0));
#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
VERIFY(numext::is_exactly_zero((v1 * very_small).norm()));
VERIFY_IS_APPROX((v1 * very_small).normalized(), (v1 * very_small));
v3 = v1 * very_small;
v3.normalize();
VERIFY_IS_APPROX(v3, (v1 * very_small));
#endif
// check compatibility of dot and adjoint
ref = NumTraits<Scalar>::IsInteger ? 0
: (std::max)((std::max)(v1.norm(), v2.norm()),
(std::max)((square * v2).norm(), (square.adjoint() * v1).norm()));
VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref,
test_precision<Scalar>()));
// check that Random().normalized() works: tricky as the random xpr must be evaluated by
// normalized() in order to produce a consistent result.
VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
}
};
template <typename MatrixType, typename Scalar = typename MatrixType::Scalar>
MatrixType RandomMatrix(Index rows, Index cols, Scalar min, Scalar max) {
MatrixType M = MatrixType(rows, cols);
for (Index i = 0; i < rows; ++i) {
for (Index j = 0; j < cols; ++j) {
M(i, j) = Eigen::internal::random<Scalar>(min, max);
}
}
return M;
}
template <typename MatrixType>
void adjoint(const MatrixType& m) {
/* this test covers the following files:
Transpose.h Conjugate.h Dot.h
*/
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
const Index PacketSize = internal::packet_traits<Scalar>::size;
Index rows = m.rows();
Index cols = m.cols();
// Avoid integer overflow by limiting input values.
RealScalar rmin = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? NumTraits<Scalar>::IsSigned ? -100 : 0 : -1);
RealScalar rmax = static_cast<RealScalar>(NumTraits<Scalar>::IsInteger ? 100 : 1);
MatrixType m1 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax),
m2 = RandomMatrix<MatrixType>(rows, cols, rmin, rmax), m3(rows, cols),
square = RandomMatrix<SquareMatrixType>(rows, rows, rmin, rmax);
VectorType v1 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), v2 = RandomMatrix<VectorType>(rows, 1, rmin, rmax),
v3 = RandomMatrix<VectorType>(rows, 1, rmin, rmax), vzero = VectorType::Zero(rows);
Scalar s1 = internal::random<Scalar>(rmin, rmax), s2 = internal::random<Scalar>(rmin, rmax);
// check basic compatibility of adjoint, transpose, conjugate
VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
// check multiplicative behavior
VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
// check basic properties of dot, squaredNorm
VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
// like in testBasicStuff, test operator() to check const-qualification
Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1);
VERIFY_IS_APPROX(m1.conjugate()(r, c), numext::conj(m1(r, c)));
VERIFY_IS_APPROX(m1.adjoint()(c, r), numext::conj(m1(r, c)));
// check inplace transpose
m3 = m1;
m3.transposeInPlace();
VERIFY_IS_APPROX(m3, m1.transpose());
m3.transposeInPlace();
VERIFY_IS_APPROX(m3, m1);
if (PacketSize < m3.rows() && PacketSize < m3.cols()) {
m3 = m1;
Index i = internal::random<Index>(0, m3.rows() - PacketSize);
Index j = internal::random<Index>(0, m3.cols() - PacketSize);
m3.template block<PacketSize, PacketSize>(i, j).transposeInPlace();
VERIFY_IS_APPROX((m3.template block<PacketSize, PacketSize>(i, j)),
(m1.template block<PacketSize, PacketSize>(i, j).transpose()));
m3.template block<PacketSize, PacketSize>(i, j).transposeInPlace();
VERIFY_IS_APPROX(m3, m1);
}
// check inplace adjoint
m3 = m1;
m3.adjointInPlace();
VERIFY_IS_APPROX(m3, m1.adjoint());
m3.transposeInPlace();
VERIFY_IS_APPROX(m3, m1.conjugate());
// check mixed dot product
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
RealVectorType rv1 = RandomMatrix<RealVectorType>(rows, 1, rmin, rmax);
VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
VERIFY(is_same_type(m1, m1.template conjugateIf<false>()));
VERIFY(is_same_type(m1.conjugate(), m1.template conjugateIf<true>()));
}
template <int>
void adjoint_extra() {
MatrixXcf a(10, 10), b(10, 10);
VERIFY_RAISES_ASSERT(a = a.transpose());
VERIFY_RAISES_ASSERT(a = a.transpose() + b);
VERIFY_RAISES_ASSERT(a = b + a.transpose());
VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
VERIFY_RAISES_ASSERT(a = a.adjoint());
VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
VERIFY_RAISES_ASSERT(a = b + a.adjoint());
// no assertion should be triggered for these cases:
a.transpose() = a.transpose();
a.transpose() += a.transpose();
a.transpose() += a.transpose() + b;
a.transpose() = a.adjoint();
a.transpose() += a.adjoint();
a.transpose() += a.adjoint() + b;
// regression tests for check_for_aliasing
MatrixXd c(10, 10);
c = 1.0 * MatrixXd::Ones(10, 10) + c;
c = MatrixXd::Ones(10, 10) * 1.0 + c;
c = c + MatrixXd::Ones(10, 10).cwiseProduct(MatrixXd::Zero(10, 10));
c = MatrixXd::Ones(10, 10) * MatrixXd::Zero(10, 10);
// regression for bug 1646
for (int j = 0; j < 10; ++j) {
c.col(j).head(j) = c.row(j).head(j);
}
for (int j = 0; j < 10; ++j) {
c.col(j) = c.row(j);
}
a.conservativeResize(1, 1);
a = a.transpose();
a.conservativeResize(0, 0);
a = a.transpose();
}
EIGEN_DECLARE_TEST(adjoint) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(adjoint(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(adjoint(Matrix3d()));
CALL_SUBTEST_3(adjoint(Matrix4f()));
CALL_SUBTEST_4(adjoint(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
CALL_SUBTEST_5(adjoint(
MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_6(adjoint(
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
// Complement for 128 bits vectorization:
CALL_SUBTEST_8(adjoint(Matrix2d()));
CALL_SUBTEST_9(adjoint(Matrix<int, 4, 4>()));
// 256 bits vectorization:
CALL_SUBTEST_10(adjoint(Matrix<float, 8, 8>()));
CALL_SUBTEST_11(adjoint(Matrix<double, 4, 4>()));
CALL_SUBTEST_12(adjoint(Matrix<int, 8, 8>()));
}
// test a large static matrix only once
CALL_SUBTEST_7(adjoint(Matrix<float, 100, 100>()));
CALL_SUBTEST_13(adjoint_extra<0>());
}