|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H | 
|  | #define EIGEN_SELFADJOINTEIGENSOLVER_H | 
|  |  | 
|  | #include "./Tridiagonalization.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename _MatrixType> | 
|  | class GeneralizedSelfAdjointEigenSolver; | 
|  |  | 
|  | namespace internal { | 
|  | template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues; | 
|  | template<typename MatrixType, typename DiagType, typename SubDiagType> | 
|  | ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); | 
|  | } | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class SelfAdjointEigenSolver | 
|  | * | 
|  | * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices | 
|  | * | 
|  | * \tparam _MatrixType the type of the matrix of which we are computing the | 
|  | * eigendecomposition; this is expected to be an instantiation of the Matrix | 
|  | * class template. | 
|  | * | 
|  | * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real | 
|  | * matrices, this means that the matrix is symmetric: it equals its | 
|  | * transpose. This class computes the eigenvalues and eigenvectors of a | 
|  | * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors | 
|  | * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a | 
|  | * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with | 
|  | * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the | 
|  | * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint | 
|  | * matrices, the matrix \f$ V \f$ is always invertible). This is called the | 
|  | * eigendecomposition. | 
|  | * | 
|  | * The algorithm exploits the fact that the matrix is selfadjoint, making it | 
|  | * faster and more accurate than the general purpose eigenvalue algorithms | 
|  | * implemented in EigenSolver and ComplexEigenSolver. | 
|  | * | 
|  | * Only the \b lower \b triangular \b part of the input matrix is referenced. | 
|  | * | 
|  | * Call the function compute() to compute the eigenvalues and eigenvectors of | 
|  | * a given matrix. Alternatively, you can use the | 
|  | * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes | 
|  | * the eigenvalues and eigenvectors at construction time. Once the eigenvalue | 
|  | * and eigenvectors are computed, they can be retrieved with the eigenvalues() | 
|  | * and eigenvectors() functions. | 
|  | * | 
|  | * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) | 
|  | * contains an example of the typical use of this class. | 
|  | * | 
|  | * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and | 
|  | * the likes, see the class GeneralizedSelfAdjointEigenSolver. | 
|  | * | 
|  | * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver | 
|  | */ | 
|  | template<typename _MatrixType> class SelfAdjointEigenSolver | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | Size = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | /** \brief Scalar type for matrices of type \p _MatrixType. */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType; | 
|  |  | 
|  | /** \brief Real scalar type for \p _MatrixType. | 
|  | * | 
|  | * This is just \c Scalar if #Scalar is real (e.g., \c float or | 
|  | * \c double), and the type of the real part of \c Scalar if #Scalar is | 
|  | * complex. | 
|  | */ | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>; | 
|  |  | 
|  | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
|  | * | 
|  | * This is a column vector with entries of type #RealScalar. | 
|  | * The length of the vector is the size of \p _MatrixType. | 
|  | */ | 
|  | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; | 
|  | typedef Tridiagonalization<MatrixType> TridiagonalizationType; | 
|  | typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; | 
|  |  | 
|  | /** \brief Default constructor for fixed-size matrices. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via compute(). This constructor | 
|  | * can only be used if \p _MatrixType is a fixed-size matrix; use | 
|  | * SelfAdjointEigenSolver(Index) for dynamic-size matrices. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | SelfAdjointEigenSolver() | 
|  | : m_eivec(), | 
|  | m_eivalues(), | 
|  | m_subdiag(), | 
|  | m_isInitialized(false) | 
|  | { } | 
|  |  | 
|  | /** \brief Constructor, pre-allocates memory for dynamic-size matrices. | 
|  | * | 
|  | * \param [in]  size  Positive integer, size of the matrix whose | 
|  | * eigenvalues and eigenvectors will be computed. | 
|  | * | 
|  | * This constructor is useful for dynamic-size matrices, when the user | 
|  | * intends to perform decompositions via compute(). The \p size | 
|  | * parameter is only used as a hint. It is not an error to give a wrong | 
|  | * \p size, but it may impair performance. | 
|  | * | 
|  | * \sa compute() for an example | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | explicit SelfAdjointEigenSolver(Index size) | 
|  | : m_eivec(size, size), | 
|  | m_eivalues(size), | 
|  | m_subdiag(size > 1 ? size - 1 : 1), | 
|  | m_isInitialized(false) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to | 
|  | *    be computed. Only the lower triangular part of the matrix is referenced. | 
|  | * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
|  | * | 
|  | * This constructor calls compute(const MatrixType&, int) to compute the | 
|  | * eigenvalues of the matrix \p matrix. The eigenvectors are computed if | 
|  | * \p options equals #ComputeEigenvectors. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out | 
|  | * | 
|  | * \sa compute(const MatrixType&, int) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | explicit SelfAdjointEigenSolver(const MatrixType& matrix, int options = ComputeEigenvectors) | 
|  | : m_eivec(matrix.rows(), matrix.cols()), | 
|  | m_eivalues(matrix.cols()), | 
|  | m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix, options); | 
|  | } | 
|  |  | 
|  | /** \brief Computes eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to | 
|  | *    be computed. Only the lower triangular part of the matrix is referenced. | 
|  | * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * This function computes the eigenvalues of \p matrix.  The eigenvalues() | 
|  | * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors, | 
|  | * then the eigenvectors are also computed and can be retrieved by | 
|  | * calling eigenvectors(). | 
|  | * | 
|  | * This implementation uses a symmetric QR algorithm. The matrix is first | 
|  | * reduced to tridiagonal form using the Tridiagonalization class. The | 
|  | * tridiagonal matrix is then brought to diagonal form with implicit | 
|  | * symmetric QR steps with Wilkinson shift. Details can be found in | 
|  | * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>. | 
|  | * | 
|  | * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors | 
|  | * are required and \f$ 4n^3/3 \f$ if they are not required. | 
|  | * | 
|  | * This method reuses the memory in the SelfAdjointEigenSolver object that | 
|  | * was allocated when the object was constructed, if the size of the | 
|  | * matrix does not change. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out | 
|  | * | 
|  | * \sa SelfAdjointEigenSolver(const MatrixType&, int) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | SelfAdjointEigenSolver& compute(const MatrixType& matrix, int options = ComputeEigenvectors); | 
|  |  | 
|  | /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm | 
|  | * | 
|  | * This is a variant of compute(const MatrixType&, int options) which | 
|  | * directly solves the underlying polynomial equation. | 
|  | * | 
|  | * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). | 
|  | * | 
|  | * This method is usually significantly faster than the QR iterative algorithm | 
|  | * but it might also be less accurate. It is also worth noting that | 
|  | * for 3x3 matrices it involves trigonometric operations which are | 
|  | * not necessarily available for all scalar types. | 
|  | * | 
|  | * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: | 
|  | *   - double: 1e-8 | 
|  | *   - float:  1e-3 | 
|  | * | 
|  | * \sa compute(const MatrixType&, int options) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); | 
|  |  | 
|  | /** | 
|  | *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix | 
|  | * | 
|  | * \param[in] diag The vector containing the diagonal of the matrix. | 
|  | * \param[in] subdiag The subdiagonal of the matrix. | 
|  | * \returns Reference to \c *this | 
|  | * | 
|  | * This function assumes that the matrix has been reduced to tridiagonal form. | 
|  | * | 
|  | * \sa compute(const MatrixType&, int) for more information | 
|  | */ | 
|  | SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); | 
|  |  | 
|  | /** \brief Returns the eigenvectors of given matrix. | 
|  | * | 
|  | * \returns  A const reference to the matrix whose columns are the eigenvectors. | 
|  | * | 
|  | * \pre The eigenvectors have been computed before. | 
|  | * | 
|  | * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
|  | * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
|  | * eigenvectors are normalized to have (Euclidean) norm equal to one. If | 
|  | * this object was used to solve the eigenproblem for the selfadjoint | 
|  | * matrix \f$ A \f$, then the matrix returned by this function is the | 
|  | * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out | 
|  | * | 
|  | * \sa eigenvalues() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | const EigenvectorsType& eigenvectors() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the eigenvalues of given matrix. | 
|  | * | 
|  | * \returns A const reference to the column vector containing the eigenvalues. | 
|  | * | 
|  | * \pre The eigenvalues have been computed before. | 
|  | * | 
|  | * The eigenvalues are repeated according to their algebraic multiplicity, | 
|  | * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
|  | * are sorted in increasing order. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out | 
|  | * | 
|  | * \sa eigenvectors(), MatrixBase::eigenvalues() | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | const RealVectorType& eigenvalues() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | return m_eivalues; | 
|  | } | 
|  |  | 
|  | /** \brief Computes the positive-definite square root of the matrix. | 
|  | * | 
|  | * \returns the positive-definite square root of the matrix | 
|  | * | 
|  | * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
|  | * have been computed before. | 
|  | * | 
|  | * The square root of a positive-definite matrix \f$ A \f$ is the | 
|  | * positive-definite matrix whose square equals \f$ A \f$. This function | 
|  | * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the | 
|  | * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out | 
|  | * | 
|  | * \sa operatorInverseSqrt(), | 
|  | *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | MatrixType operatorSqrt() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \brief Computes the inverse square root of the matrix. | 
|  | * | 
|  | * \returns the inverse positive-definite square root of the matrix | 
|  | * | 
|  | * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
|  | * have been computed before. | 
|  | * | 
|  | * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to | 
|  | * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is | 
|  | * cheaper than first computing the square root with operatorSqrt() and | 
|  | * then its inverse with MatrixBase::inverse(). | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out | 
|  | * | 
|  | * \sa operatorSqrt(), MatrixBase::inverse(), | 
|  | *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | MatrixType operatorInverseSqrt() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Maximum number of iterations. | 
|  | * | 
|  | * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n | 
|  | * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). | 
|  | */ | 
|  | static const int m_maxIterations = 30; | 
|  |  | 
|  | protected: | 
|  | static void check_template_parameters() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|  | } | 
|  |  | 
|  | EigenvectorsType m_eivec; | 
|  | RealVectorType m_eivalues; | 
|  | typename TridiagonalizationType::SubDiagonalType m_subdiag; | 
|  | ComputationInfo m_info; | 
|  | bool m_isInitialized; | 
|  | bool m_eigenvectorsOk; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | /** \internal | 
|  | * | 
|  | * \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * Performs a QR step on a tridiagonal symmetric matrix represented as a | 
|  | * pair of two vectors \a diag and \a subdiag. | 
|  | * | 
|  | * \param matA the input selfadjoint matrix | 
|  | * \param hCoeffs returned Householder coefficients | 
|  | * | 
|  | * For compilation efficiency reasons, this procedure does not use eigen expression | 
|  | * for its arguments. | 
|  | * | 
|  | * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: | 
|  | * "implicit symmetric QR step with Wilkinson shift" | 
|  | */ | 
|  | template<int StorageOrder,typename RealScalar, typename Scalar, typename Index> | 
|  | EIGEN_DEVICE_FUNC | 
|  | static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> | 
|  | ::compute(const MatrixType& matrix, int options) | 
|  | { | 
|  | check_template_parameters(); | 
|  |  | 
|  | using std::abs; | 
|  | eigen_assert(matrix.cols() == matrix.rows()); | 
|  | eigen_assert((options&~(EigVecMask|GenEigMask))==0 | 
|  | && (options&EigVecMask)!=EigVecMask | 
|  | && "invalid option parameter"); | 
|  | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; | 
|  | Index n = matrix.cols(); | 
|  | m_eivalues.resize(n,1); | 
|  |  | 
|  | if(n==1) | 
|  | { | 
|  | m_eivalues.coeffRef(0,0) = numext::real(matrix.coeff(0,0)); | 
|  | if(computeEigenvectors) | 
|  | m_eivec.setOnes(n,n); | 
|  | m_info = Success; | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = computeEigenvectors; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // declare some aliases | 
|  | RealVectorType& diag = m_eivalues; | 
|  | EigenvectorsType& mat = m_eivec; | 
|  |  | 
|  | // map the matrix coefficients to [-1:1] to avoid over- and underflow. | 
|  | mat = matrix.template triangularView<Lower>(); | 
|  | RealScalar scale = mat.cwiseAbs().maxCoeff(); | 
|  | if(scale==RealScalar(0)) scale = RealScalar(1); | 
|  | mat.template triangularView<Lower>() /= scale; | 
|  | m_subdiag.resize(n-1); | 
|  | internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors); | 
|  |  | 
|  | m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | 
|  |  | 
|  | // scale back the eigen values | 
|  | m_eivalues *= scale; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = computeEigenvectors; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> | 
|  | ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) | 
|  | { | 
|  | //TODO : Add an option to scale the values beforehand | 
|  | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; | 
|  |  | 
|  | m_eivalues = diag; | 
|  | m_subdiag = subdiag; | 
|  | if (computeEigenvectors) | 
|  | { | 
|  | m_eivec.setIdentity(diag.size(), diag.size()); | 
|  | } | 
|  | m_info = computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = computeEigenvectors; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  | /** | 
|  | * \internal | 
|  | * \brief Compute the eigendecomposition from a tridiagonal matrix | 
|  | * | 
|  | * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues | 
|  | * \param[in] subdiag : The subdiagonal part of the matrix. | 
|  | * \param[in,out] : On input, the maximum number of iterations, on output, the effective number of iterations. | 
|  | * \param[out] eivec : The matrix to store the eigenvectors... if needed. allocated on input | 
|  | * \returns \c Success or \c NoConvergence | 
|  | */ | 
|  | template<typename MatrixType, typename DiagType, typename SubDiagType> | 
|  | ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) | 
|  | { | 
|  | using std::abs; | 
|  |  | 
|  | ComputationInfo info; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index n = diag.size(); | 
|  | Index end = n-1; | 
|  | Index start = 0; | 
|  | Index iter = 0; // total number of iterations | 
|  |  | 
|  | typedef typename DiagType::RealScalar RealScalar; | 
|  | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
|  |  | 
|  | while (end>0) | 
|  | { | 
|  | for (Index i = start; i<end; ++i) | 
|  | if (internal::isMuchSmallerThan(abs(subdiag[i]),(abs(diag[i])+abs(diag[i+1]))) || abs(subdiag[i]) <= considerAsZero) | 
|  | subdiag[i] = 0; | 
|  |  | 
|  | // find the largest unreduced block | 
|  | while (end>0 && subdiag[end-1]==0) | 
|  | { | 
|  | end--; | 
|  | } | 
|  | if (end<=0) | 
|  | break; | 
|  |  | 
|  | // if we spent too many iterations, we give up | 
|  | iter++; | 
|  | if(iter > maxIterations * n) break; | 
|  |  | 
|  | start = end - 1; | 
|  | while (start>0 && subdiag[start-1]!=0) | 
|  | start--; | 
|  |  | 
|  | internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); | 
|  | } | 
|  | if (iter <= maxIterations * n) | 
|  | info = Success; | 
|  | else | 
|  | info = NoConvergence; | 
|  |  | 
|  | // Sort eigenvalues and corresponding vectors. | 
|  | // TODO make the sort optional ? | 
|  | // TODO use a better sort algorithm !! | 
|  | if (info == Success) | 
|  | { | 
|  | for (Index i = 0; i < n-1; ++i) | 
|  | { | 
|  | Index k; | 
|  | diag.segment(i,n-i).minCoeff(&k); | 
|  | if (k > 0) | 
|  | { | 
|  | std::swap(diag[i], diag[k+i]); | 
|  | if(computeEigenvectors) | 
|  | eivec.col(i).swap(eivec.col(k+i)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return info; | 
|  | } | 
|  |  | 
|  | template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) | 
|  | { eig.compute(A,options); } | 
|  | }; | 
|  |  | 
|  | template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false> | 
|  | { | 
|  | typedef typename SolverType::MatrixType MatrixType; | 
|  | typedef typename SolverType::RealVectorType VectorType; | 
|  | typedef typename SolverType::Scalar Scalar; | 
|  | typedef typename SolverType::EigenvectorsType EigenvectorsType; | 
|  |  | 
|  |  | 
|  | /** \internal | 
|  | * Computes the roots of the characteristic polynomial of \a m. | 
|  | * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void computeRoots(const MatrixType& m, VectorType& roots) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(sqrt) | 
|  | EIGEN_USING_STD_MATH(atan2) | 
|  | EIGEN_USING_STD_MATH(cos) | 
|  | EIGEN_USING_STD_MATH(sin) | 
|  | const Scalar s_inv3 = Scalar(1.0)/Scalar(3.0); | 
|  | const Scalar s_sqrt3 = sqrt(Scalar(3.0)); | 
|  |  | 
|  | // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The | 
|  | // eigenvalues are the roots to this equation, all guaranteed to be | 
|  | // real-valued, because the matrix is symmetric. | 
|  | Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0); | 
|  | Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1); | 
|  | Scalar c2 = m(0,0) + m(1,1) + m(2,2); | 
|  |  | 
|  | // Construct the parameters used in classifying the roots of the equation | 
|  | // and in solving the equation for the roots in closed form. | 
|  | Scalar c2_over_3 = c2*s_inv3; | 
|  | Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3; | 
|  | a_over_3 = numext::maxi(a_over_3, Scalar(0)); | 
|  |  | 
|  | Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1)); | 
|  |  | 
|  | Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b; | 
|  | q = numext::maxi(q, Scalar(0)); | 
|  |  | 
|  | // Compute the eigenvalues by solving for the roots of the polynomial. | 
|  | Scalar rho = sqrt(a_over_3); | 
|  | Scalar theta = atan2(sqrt(q),half_b)*s_inv3;  // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] | 
|  | Scalar cos_theta = cos(theta); | 
|  | Scalar sin_theta = sin(theta); | 
|  | // roots are already sorted, since cos is monotonically decreasing on [0, pi] | 
|  | roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3) | 
|  | roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3) | 
|  | roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative) | 
|  | { | 
|  | using std::abs; | 
|  | Index i0; | 
|  | // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): | 
|  | mat.diagonal().cwiseAbs().maxCoeff(&i0); | 
|  | // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, | 
|  | // so let's save it: | 
|  | representative = mat.col(i0); | 
|  | Scalar n0, n1; | 
|  | VectorType c0, c1; | 
|  | n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm(); | 
|  | n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm(); | 
|  | if(n0>n1) res = c0/std::sqrt(n0); | 
|  | else      res = c1/std::sqrt(n1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void run(SolverType& solver, const MatrixType& mat, int options) | 
|  | { | 
|  | eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); | 
|  | eigen_assert((options&~(EigVecMask|GenEigMask))==0 | 
|  | && (options&EigVecMask)!=EigVecMask | 
|  | && "invalid option parameter"); | 
|  | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; | 
|  |  | 
|  | EigenvectorsType& eivecs = solver.m_eivec; | 
|  | VectorType& eivals = solver.m_eivalues; | 
|  |  | 
|  | // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. | 
|  | Scalar shift = mat.trace() / Scalar(3); | 
|  | // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later | 
|  | MatrixType scaledMat = mat.template selfadjointView<Lower>(); | 
|  | scaledMat.diagonal().array() -= shift; | 
|  | Scalar scale = scaledMat.cwiseAbs().maxCoeff(); | 
|  | if(scale > 0) scaledMat /= scale;   // TODO for scale==0 we could save the remaining operations | 
|  |  | 
|  | // compute the eigenvalues | 
|  | computeRoots(scaledMat,eivals); | 
|  |  | 
|  | // compute the eigenvectors | 
|  | if(computeEigenvectors) | 
|  | { | 
|  | if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon()) | 
|  | { | 
|  | // All three eigenvalues are numerically the same | 
|  | eivecs.setIdentity(); | 
|  | } | 
|  | else | 
|  | { | 
|  | MatrixType tmp; | 
|  | tmp = scaledMat; | 
|  |  | 
|  | // Compute the eigenvector of the most distinct eigenvalue | 
|  | Scalar d0 = eivals(2) - eivals(1); | 
|  | Scalar d1 = eivals(1) - eivals(0); | 
|  | Index k(0), l(2); | 
|  | if(d0 > d1) | 
|  | { | 
|  | numext::swap(k,l); | 
|  | d0 = d1; | 
|  | } | 
|  |  | 
|  | // Compute the eigenvector of index k | 
|  | { | 
|  | tmp.diagonal().array () -= eivals(k); | 
|  | // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. | 
|  | extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); | 
|  | } | 
|  |  | 
|  | // Compute eigenvector of index l | 
|  | if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1) | 
|  | { | 
|  | // If d0 is too small, then the two other eigenvalues are numerically the same, | 
|  | // and thus we only have to ortho-normalize the near orthogonal vector we saved above. | 
|  | eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l); | 
|  | eivecs.col(l).normalize(); | 
|  | } | 
|  | else | 
|  | { | 
|  | tmp = scaledMat; | 
|  | tmp.diagonal().array () -= eivals(l); | 
|  |  | 
|  | VectorType dummy; | 
|  | extract_kernel(tmp, eivecs.col(l), dummy); | 
|  | } | 
|  |  | 
|  | // Compute last eigenvector from the other two | 
|  | eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rescale back to the original size. | 
|  | eivals *= scale; | 
|  | eivals.array() += shift; | 
|  |  | 
|  | solver.m_info = Success; | 
|  | solver.m_isInitialized = true; | 
|  | solver.m_eigenvectorsOk = computeEigenvectors; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // 2x2 direct eigenvalues decomposition, code from Hauke Heibel | 
|  | template<typename SolverType> | 
|  | struct direct_selfadjoint_eigenvalues<SolverType,2,false> | 
|  | { | 
|  | typedef typename SolverType::MatrixType MatrixType; | 
|  | typedef typename SolverType::RealVectorType VectorType; | 
|  | typedef typename SolverType::Scalar Scalar; | 
|  | typedef typename SolverType::EigenvectorsType EigenvectorsType; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void computeRoots(const MatrixType& m, VectorType& roots) | 
|  | { | 
|  | using std::sqrt; | 
|  | const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))); | 
|  | const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1)); | 
|  | roots(0) = t1 - t0; | 
|  | roots(1) = t1 + t0; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void run(SolverType& solver, const MatrixType& mat, int options) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(sqrt); | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  |  | 
|  | eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); | 
|  | eigen_assert((options&~(EigVecMask|GenEigMask))==0 | 
|  | && (options&EigVecMask)!=EigVecMask | 
|  | && "invalid option parameter"); | 
|  | bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; | 
|  |  | 
|  | EigenvectorsType& eivecs = solver.m_eivec; | 
|  | VectorType& eivals = solver.m_eivalues; | 
|  |  | 
|  | // map the matrix coefficients to [-1:1] to avoid over- and underflow. | 
|  | Scalar scale = mat.cwiseAbs().maxCoeff(); | 
|  | scale = numext::maxi(scale,Scalar(1)); | 
|  | MatrixType scaledMat = mat / scale; | 
|  |  | 
|  | // Compute the eigenvalues | 
|  | computeRoots(scaledMat,eivals); | 
|  |  | 
|  | // compute the eigen vectors | 
|  | if(computeEigenvectors) | 
|  | { | 
|  | if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon()) | 
|  | { | 
|  | eivecs.setIdentity(); | 
|  | } | 
|  | else | 
|  | { | 
|  | scaledMat.diagonal().array () -= eivals(1); | 
|  | Scalar a2 = numext::abs2(scaledMat(0,0)); | 
|  | Scalar c2 = numext::abs2(scaledMat(1,1)); | 
|  | Scalar b2 = numext::abs2(scaledMat(1,0)); | 
|  | if(a2>c2) | 
|  | { | 
|  | eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0); | 
|  | eivecs.col(1) /= sqrt(a2+b2); | 
|  | } | 
|  | else | 
|  | { | 
|  | eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0); | 
|  | eivecs.col(1) /= sqrt(c2+b2); | 
|  | } | 
|  |  | 
|  | eivecs.col(0) << eivecs.col(1).unitOrthogonal(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rescale back to the original size. | 
|  | eivals *= scale; | 
|  |  | 
|  | solver.m_info = Success; | 
|  | solver.m_isInitialized = true; | 
|  | solver.m_eigenvectorsOk = computeEigenvectors; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType> | 
|  | ::computeDirect(const MatrixType& matrix, int options) | 
|  | { | 
|  | internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  | template<int StorageOrder,typename RealScalar, typename Scalar, typename Index> | 
|  | EIGEN_DEVICE_FUNC | 
|  | static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n) | 
|  | { | 
|  | using std::abs; | 
|  | RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); | 
|  | RealScalar e = subdiag[end-1]; | 
|  | // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still | 
|  | // underflow thus leading to inf/NaN values when using the following commented code: | 
|  | //   RealScalar e2 = numext::abs2(subdiag[end-1]); | 
|  | //   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); | 
|  | // This explain the following, somewhat more complicated, version: | 
|  | RealScalar mu = diag[end]; | 
|  | if(td==0) | 
|  | mu -= abs(e); | 
|  | else | 
|  | { | 
|  | RealScalar e2 = numext::abs2(subdiag[end-1]); | 
|  | RealScalar h = numext::hypot(td,e); | 
|  | if(e2==0)  mu -= (e / (td + (td>0 ? 1 : -1))) * (e / h); | 
|  | else       mu -= e2 / (td + (td>0 ? h : -h)); | 
|  | } | 
|  |  | 
|  | RealScalar x = diag[start] - mu; | 
|  | RealScalar z = subdiag[start]; | 
|  | for (Index k = start; k < end; ++k) | 
|  | { | 
|  | JacobiRotation<RealScalar> rot; | 
|  | rot.makeGivens(x, z); | 
|  |  | 
|  | // do T = G' T G | 
|  | RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; | 
|  | RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; | 
|  |  | 
|  | diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); | 
|  | diag[k+1] = rot.s() * sdk + rot.c() * dkp1; | 
|  | subdiag[k] = rot.c() * sdk - rot.s() * dkp1; | 
|  |  | 
|  |  | 
|  | if (k > start) | 
|  | subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; | 
|  |  | 
|  | x = subdiag[k]; | 
|  |  | 
|  | if (k < end - 1) | 
|  | { | 
|  | z = -rot.s() * subdiag[k+1]; | 
|  | subdiag[k + 1] = rot.c() * subdiag[k+1]; | 
|  | } | 
|  |  | 
|  | // apply the givens rotation to the unit matrix Q = Q * G | 
|  | if (matrixQ) | 
|  | { | 
|  | // FIXME if StorageOrder == RowMajor this operation is not very efficient | 
|  | Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n); | 
|  | q.applyOnTheRight(k,k+1,rot); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SELFADJOINTEIGENSOLVER_H |