blob: a7cb30cb94e9164b015d28e07f5c1ff8cfad9a24 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
#define EIGEN_ITERATIVE_SOLVER_BASE_H
namespace Eigen {
/** \ingroup IterativeLinearSolvers_Module
* \brief Base class for linear iterative solvers
*
* \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
*/
template< typename Derived>
class IterativeSolverBase : public SparseSolverBase<Derived>
{
protected:
typedef SparseSolverBase<Derived> Base;
using Base::m_isInitialized;
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::RealScalar RealScalar;
public:
using Base::derived;
/** Default constructor. */
IterativeSolverBase()
: m_dummy(0,0), mp_matrix(m_dummy)
{
init();
}
/** Initialize the solver with matrix \a A for further \c Ax=b solving.
*
* This constructor is a shortcut for the default constructor followed
* by a call to compute().
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template<typename MatrixDerived>
explicit IterativeSolverBase(const EigenBase<MatrixDerived>& A)
: mp_matrix(A.derived())
{
init();
compute(mp_matrix);
}
~IterativeSolverBase() {}
/** Initializes the iterative solver for the sparsity pattern of the matrix \a A for further solving \c Ax=b problems.
*
* Currently, this function mostly calls analyzePattern on the preconditioner. In the future
* we might, for instance, implement column reordering for faster matrix vector products.
*/
template<typename MatrixDerived>
Derived& analyzePattern(const EigenBase<MatrixDerived>& A)
{
grab(A.derived());
m_preconditioner.analyzePattern(mp_matrix);
m_isInitialized = true;
m_analysisIsOk = true;
m_info = m_preconditioner.info();
return derived();
}
/** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
*
* Currently, this function mostly calls factorize on the preconditioner.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template<typename MatrixDerived>
Derived& factorize(const EigenBase<MatrixDerived>& A)
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
grab(A.derived());
m_preconditioner.factorize(mp_matrix);
m_factorizationIsOk = true;
m_info = m_preconditioner.info();
return derived();
}
/** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
*
* Currently, this function mostly initializes/computes the preconditioner. In the future
* we might, for instance, implement column reordering for faster matrix vector products.
*
* \warning this class stores a reference to the matrix A as well as some
* precomputed values that depend on it. Therefore, if \a A is changed
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
template<typename MatrixDerived>
Derived& compute(const EigenBase<MatrixDerived>& A)
{
grab(A.derived());
m_preconditioner.compute(mp_matrix);
m_isInitialized = true;
m_analysisIsOk = true;
m_factorizationIsOk = true;
m_info = m_preconditioner.info();
return derived();
}
/** \internal */
Index rows() const { return mp_matrix.rows(); }
/** \internal */
Index cols() const { return mp_matrix.cols(); }
/** \returns the tolerance threshold used by the stopping criteria.
* \sa setTolerance()
*/
RealScalar tolerance() const { return m_tolerance; }
/** Sets the tolerance threshold used by the stopping criteria.
*
* This value is used as an upper bound to the relative residual error: |Ax-b|/|b|.
* The default value is the machine precision given by NumTraits<Scalar>::epsilon()
*/
Derived& setTolerance(const RealScalar& tolerance)
{
m_tolerance = tolerance;
return derived();
}
/** \returns a read-write reference to the preconditioner for custom configuration. */
Preconditioner& preconditioner() { return m_preconditioner; }
/** \returns a read-only reference to the preconditioner. */
const Preconditioner& preconditioner() const { return m_preconditioner; }
/** \returns the max number of iterations.
* It is either the value setted by setMaxIterations or, by default,
* twice the number of columns of the matrix.
*/
Index maxIterations() const
{
return (m_maxIterations<0) ? 2*mp_matrix.cols() : m_maxIterations;
}
/** Sets the max number of iterations.
* Default is twice the number of columns of the matrix.
*/
Derived& setMaxIterations(Index maxIters)
{
m_maxIterations = maxIters;
return derived();
}
/** \returns the number of iterations performed during the last solve */
Index iterations() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_iterations;
}
/** \returns the tolerance error reached during the last solve.
* It is a close approximation of the true relative residual error |Ax-b|/|b|.
*/
RealScalar error() const
{
eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
return m_error;
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
* and \a x0 as an initial solution.
*
* \sa solve(), compute()
*/
template<typename Rhs,typename Guess>
inline const SolveWithGuess<Derived, Rhs, Guess>
solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
{
eigen_assert(m_isInitialized && "Solver is not initialized.");
eigen_assert(derived().rows()==b.rows() && "solve(): invalid number of rows of the right hand side matrix b");
return SolveWithGuess<Derived, Rhs, Guess>(derived(), b.derived(), x0);
}
/** \returns Success if the iterations converged, and NoConvergence otherwise. */
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
return m_info;
}
/** \internal */
template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
void _solve_impl(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(rows()==b.rows());
Index rhsCols = b.cols();
Index size = b.rows();
Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
Eigen::Matrix<DestScalar,Dynamic,1> tx(size);
for(Index k=0; k<rhsCols; ++k)
{
tb = b.col(k);
tx = derived().solve(tb);
dest.col(k) = tx.sparseView(0);
}
}
protected:
void init()
{
m_isInitialized = false;
m_analysisIsOk = false;
m_factorizationIsOk = false;
m_maxIterations = -1;
m_tolerance = NumTraits<Scalar>::epsilon();
}
template<typename MatrixDerived>
void grab(const EigenBase<MatrixDerived> &A)
{
mp_matrix.~Ref<const MatrixType>();
::new (&mp_matrix) Ref<const MatrixType>(A.derived());
}
void grab(const Ref<const MatrixType> &A)
{
if(&(A.derived()) != &mp_matrix)
{
mp_matrix.~Ref<const MatrixType>();
::new (&mp_matrix) Ref<const MatrixType>(A);
}
}
MatrixType m_dummy;
Ref<const MatrixType> mp_matrix;
Preconditioner m_preconditioner;
Index m_maxIterations;
RealScalar m_tolerance;
mutable RealScalar m_error;
mutable Index m_iterations;
mutable ComputationInfo m_info;
mutable bool m_analysisIsOk, m_factorizationIsOk;
};
} // end namespace Eigen
#endif // EIGEN_ITERATIVE_SOLVER_BASE_H