|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | struct scalar_norm1_op { | 
|  | typedef RealScalar result_type; | 
|  | EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op) | 
|  | inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); } | 
|  | }; | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  | template<> struct functor_traits<scalar_norm1_op > | 
|  | { | 
|  | enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  | // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum | 
|  | // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n | 
|  | RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "__asum " << *n << " " << *incx << "\n"; | 
|  | Complex* x = reinterpret_cast<Complex*>(px); | 
|  |  | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | if(*incx==1)  return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum(); | 
|  | else          return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum(); | 
|  | } | 
|  |  | 
|  | // computes a dot product of a conjugated vector with another vector. | 
|  | int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) | 
|  | { | 
|  | //   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; | 
|  | Scalar* res = reinterpret_cast<Scalar*>(pres); | 
|  |  | 
|  | if(*n<=0) | 
|  | { | 
|  | *res = Scalar(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).dot(make_vector(y,*n))); | 
|  | else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy))); | 
|  | else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy))); | 
|  | else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse())); | 
|  | else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse())); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // computes a vector-vector dot product without complex conjugation. | 
|  | int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) | 
|  | { | 
|  | Scalar* res = reinterpret_cast<Scalar*>(pres); | 
|  |  | 
|  | if(*n<=0) | 
|  | { | 
|  | *res = Scalar(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  |  | 
|  | if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum(); | 
|  | else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum(); | 
|  | else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum(); | 
|  | else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); | 
|  | else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx) | 
|  | { | 
|  | //   std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  |  | 
|  | if(*incx==1) | 
|  | return make_vector(x,*n).stableNorm(); | 
|  |  | 
|  | return make_vector(x,*n,*incx).stableNorm(); | 
|  | } | 
|  |  | 
|  | int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | Scalar* y = reinterpret_cast<Scalar*>(py); | 
|  | RealScalar c = *pc; | 
|  | RealScalar s = *ps; | 
|  |  | 
|  | StridedVectorType vx(make_vector(x,*n,std::abs(*incx))); | 
|  | StridedVectorType vy(make_vector(y,*n,std::abs(*incy))); | 
|  |  | 
|  | Reverse<StridedVectorType> rvx(vx); | 
|  | Reverse<StridedVectorType> rvy(vy); | 
|  |  | 
|  | // TODO implement mixed real-scalar rotations | 
|  | if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s)); | 
|  | else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s)); | 
|  | else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx) | 
|  | { | 
|  | if(*n<=0) return 0; | 
|  |  | 
|  | Scalar* x = reinterpret_cast<Scalar*>(px); | 
|  | RealScalar alpha = *palpha; | 
|  |  | 
|  | //   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; | 
|  |  | 
|  | if(*incx==1)  make_vector(x,*n) *= alpha; | 
|  | else          make_vector(x,*n,std::abs(*incx)) *= alpha; | 
|  |  | 
|  | return 0; | 
|  | } |