| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_MATH_FUNCTIONS_AVX_H |
| #define EIGEN_MATH_FUNCTIONS_AVX_H |
| |
| // For some reason, this function didn't make it into the avxintirn.h |
| // used by the compiler, so we'll just wrap it. |
| #define _mm256_setr_m128(lo, hi) \ |
| _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1) |
| |
| /* The sin, cos, exp, and log functions of this file are loosely derived from |
| * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ |
| */ |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // Sine function |
| // Computes sin(x) by wrapping x to the interval [-Pi/4,3*Pi/4] and |
| // evaluating interpolants in [-Pi/4,Pi/4] or [Pi/4,3*Pi/4]. The interpolants |
| // are (anti-)symmetric and thus have only odd/even coefficients |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f |
| psin<Packet8f>(const Packet8f& _x) { |
| Packet8f x = _x; |
| |
| // Some useful values. |
| _EIGEN_DECLARE_CONST_Packet8i(one, 1); |
| _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f); |
| _EIGEN_DECLARE_CONST_Packet8f(two, 2.0f); |
| _EIGEN_DECLARE_CONST_Packet8f(one_over_four, 0.25f); |
| _EIGEN_DECLARE_CONST_Packet8f(one_over_pi, 3.183098861837907e-01f); |
| _EIGEN_DECLARE_CONST_Packet8f(neg_pi_first, -3.140625000000000e+00); |
| _EIGEN_DECLARE_CONST_Packet8f(neg_pi_second, -9.670257568359375e-04); |
| _EIGEN_DECLARE_CONST_Packet8f(neg_pi_third, -6.278329571784980e-07); |
| _EIGEN_DECLARE_CONST_Packet8f(four_over_pi, 1.273239544735163e+00); |
| |
| // Map x from [-Pi/4,3*Pi/4] to z in [-1,3] and subtract the shifted period. |
| Packet8f z = pmul(x, p8f_one_over_pi); |
| Packet8f shift = _mm256_floor_ps(padd(z, p8f_one_over_four)); |
| x = pmadd(shift, p8f_neg_pi_first, x); |
| x = pmadd(shift, p8f_neg_pi_second, x); |
| x = pmadd(shift, p8f_neg_pi_third, x); |
| z = pmul(x, p8f_four_over_pi); |
| |
| // Make a mask for the entries that need flipping, i.e. wherever the shift |
| // is odd. |
| Packet8i shift_ints = _mm256_cvtps_epi32(shift); |
| Packet8i shift_isodd = |
| (__m256i)_mm256_and_ps((__m256)shift_ints, (__m256)p8i_one); |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| Packet8i sign_flip_mask = _mm256_slli_epi32(shift_isodd, 31); |
| #else |
| __m128i lo = |
| _mm_slli_epi32(_mm256_extractf128_si256((__m256i)shift_isodd, 0), 31); |
| __m128i hi = |
| _mm_slli_epi32(_mm256_extractf128_si256((__m256i)shift_isodd, 1), 31); |
| Packet8i sign_flip_mask = _mm256_setr_m128(lo, hi); |
| #endif |
| |
| // Create a mask for which interpolant to use, i.e. if z > 1, then the mask |
| // is set to ones for that entry. |
| Packet8f ival_mask = _mm256_cmp_ps(z, p8f_one, _CMP_GT_OQ); |
| |
| // Evaluate the polynomial for the interval [1,3] in z. |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_right_0, 9.999999724233232e-01f); |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_right_2, -3.084242535619928e-01); |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_right_4, 1.584991525700324e-02); |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_right_6, -3.188805084631342e-04); |
| Packet8f z_minus_two = psub(z, p8f_two); |
| Packet8f z_minus_two2 = pmul(z_minus_two, z_minus_two); |
| Packet8f right = pmadd(p8f_coeff_right_6, z_minus_two2, p8f_coeff_right_4); |
| right = pmadd(right, z_minus_two2, p8f_coeff_right_2); |
| right = pmadd(right, z_minus_two2, p8f_coeff_right_0); |
| |
| // Evaluate the polynomial for the interval [-1,1] in z. |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_left_1, 7.853981525427295e-01); |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_left_3, -8.074536727092352e-02); |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_left_5, 2.489871967827018e-03); |
| _EIGEN_DECLARE_CONST_Packet8f(coeff_left_7, -3.587725841214251e-05); |
| Packet8f z2 = pmul(z, z); |
| Packet8f left = pmadd(p8f_coeff_left_7, z2, p8f_coeff_left_5); |
| left = pmadd(left, z2, p8f_coeff_left_3); |
| left = pmadd(left, z2, p8f_coeff_left_1); |
| left = pmul(left, z); |
| |
| // Assemble the results, i.e. select the left and right polynomials. |
| left = _mm256_andnot_ps(ival_mask, left); |
| right = _mm256_and_ps(ival_mask, right); |
| Packet8f res = _mm256_or_ps(left, right); |
| |
| // Flip the sign on the odd intervals and return the result. |
| res = _mm256_xor_ps(res, (__m256)sign_flip_mask); |
| return res; |
| } |
| |
| // Natural logarithm |
| // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) |
| // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can |
| // be easily approximated by a polynomial centered on m=1 for stability. |
| // TODO(gonnet): Further reduce the interval allowing for lower-degree |
| // polynomial interpolants -> ... -> profit! |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f |
| plog<Packet8f>(const Packet8f& _x) { |
| Packet8f x = _x; |
| _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f); |
| _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f); |
| _EIGEN_DECLARE_CONST_Packet8f(126f, 126.0f); |
| |
| _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inv_mant_mask, ~0x7f800000); |
| |
| // The smallest non denormalized float number. |
| _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(min_norm_pos, 0x00800000); |
| _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(minus_inf, 0xff800000); |
| |
| // Polynomial coefficients. |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_SQRTHF, 0.707106781186547524f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p0, 7.0376836292E-2f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p1, -1.1514610310E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p2, 1.1676998740E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p3, -1.2420140846E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p4, +1.4249322787E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p5, -1.6668057665E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p6, +2.0000714765E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p7, -2.4999993993E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_p8, +3.3333331174E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q1, -2.12194440e-4f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_log_q2, 0.693359375f); |
| |
| Packet8f invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_NGE_UQ); // not greater equal is true if x is NaN |
| Packet8f iszero_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_EQ_OQ); |
| |
| // Truncate input values to the minimum positive normal. |
| x = pmax(x, p8f_min_norm_pos); |
| |
| // Extract the shifted exponents (No bitwise shifting in regular AVX, so |
| // convert to SSE and do it there). |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| Packet8f emm0 = _mm256_cvtepi32_ps(_mm256_srli_epi32((__m256i)x, 23)); |
| #else |
| __m128i lo = _mm_srli_epi32(_mm256_extractf128_si256((__m256i)x, 0), 23); |
| __m128i hi = _mm_srli_epi32(_mm256_extractf128_si256((__m256i)x, 1), 23); |
| Packet8f emm0 = _mm256_cvtepi32_ps(_mm256_setr_m128(lo, hi)); |
| #endif |
| Packet8f e = _mm256_sub_ps(emm0, p8f_126f); |
| |
| // Set the exponents to -1, i.e. x are in the range [0.5,1). |
| x = _mm256_and_ps(x, p8f_inv_mant_mask); |
| x = _mm256_or_ps(x, p8f_half); |
| |
| // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) |
| // and shift by -1. The values are then centered around 0, which improves |
| // the stability of the polynomial evaluation. |
| // if( x < SQRTHF ) { |
| // e -= 1; |
| // x = x + x - 1.0; |
| // } else { x = x - 1.0; } |
| Packet8f mask = _mm256_cmp_ps(x, p8f_cephes_SQRTHF, _CMP_LT_OQ); |
| Packet8f tmp = _mm256_and_ps(x, mask); |
| x = psub(x, p8f_1); |
| e = psub(e, _mm256_and_ps(p8f_1, mask)); |
| x = padd(x, tmp); |
| |
| Packet8f x2 = pmul(x, x); |
| Packet8f x3 = pmul(x2, x); |
| |
| // Evaluate the polynomial approximant of degree 8 in three parts, probably |
| // to improve instruction-level parallelism. |
| Packet8f y, y1, y2; |
| y = pmadd(p8f_cephes_log_p0, x, p8f_cephes_log_p1); |
| y1 = pmadd(p8f_cephes_log_p3, x, p8f_cephes_log_p4); |
| y2 = pmadd(p8f_cephes_log_p6, x, p8f_cephes_log_p7); |
| y = pmadd(y, x, p8f_cephes_log_p2); |
| y1 = pmadd(y1, x, p8f_cephes_log_p5); |
| y2 = pmadd(y2, x, p8f_cephes_log_p8); |
| y = pmadd(y, x3, y1); |
| y = pmadd(y, x3, y2); |
| y = pmul(y, x3); |
| |
| // Add the logarithm of the exponent back to the result of the interpolation. |
| y1 = pmul(e, p8f_cephes_log_q1); |
| tmp = pmul(x2, p8f_half); |
| y = padd(y, y1); |
| x = psub(x, tmp); |
| y2 = pmul(e, p8f_cephes_log_q2); |
| x = padd(x, y); |
| x = padd(x, y2); |
| |
| // Filter out invalid inputs, i.e. negative arg will be NAN, 0 will be -INF. |
| return _mm256_or_ps( |
| _mm256_andnot_ps(iszero_mask, _mm256_or_ps(x, invalid_mask)), |
| _mm256_and_ps(iszero_mask, p8f_minus_inf)); |
| } |
| |
| // Exponential function. Works by writing "x = m*log(2) + r" where |
| // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then |
| // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f |
| pexp<Packet8f>(const Packet8f& _x) { |
| _EIGEN_DECLARE_CONST_Packet8f(1, 1.0f); |
| _EIGEN_DECLARE_CONST_Packet8f(half, 0.5f); |
| _EIGEN_DECLARE_CONST_Packet8f(127, 127.0f); |
| |
| _EIGEN_DECLARE_CONST_Packet8f(exp_hi, 88.3762626647950f); |
| _EIGEN_DECLARE_CONST_Packet8f(exp_lo, -88.3762626647949f); |
| |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_LOG2EF, 1.44269504088896341f); |
| |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p0, 1.9875691500E-4f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p1, 1.3981999507E-3f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p2, 8.3334519073E-3f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p3, 4.1665795894E-2f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p4, 1.6666665459E-1f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_p5, 5.0000001201E-1f); |
| |
| // Clamp x. |
| Packet8f x = pmax(pmin(_x, p8f_exp_hi), p8f_exp_lo); |
| |
| // Express exp(x) as exp(m*ln(2) + r), start by extracting |
| // m = floor(x/ln(2) + 0.5). |
| Packet8f m = _mm256_floor_ps(pmadd(x, p8f_cephes_LOG2EF, p8f_half)); |
| |
| // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is |
| // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating |
| // truncation errors. Note that we don't use the "pmadd" function here to |
| // ensure that a precision-preserving FMA instruction is used. |
| #ifdef EIGEN_VECTORIZE_FMA |
| _EIGEN_DECLARE_CONST_Packet8f(nln2, -0.6931471805599453f); |
| Packet8f r = _mm256_fmadd_ps(m, p8f_nln2, x); |
| #else |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C1, 0.693359375f); |
| _EIGEN_DECLARE_CONST_Packet8f(cephes_exp_C2, -2.12194440e-4f); |
| Packet8f r = psub(x, pmul(m, p8f_cephes_exp_C1)); |
| r = psub(r, pmul(m, p8f_cephes_exp_C2)); |
| #endif |
| |
| Packet8f r2 = pmul(r, r); |
| |
| // TODO(gonnet): Split into odd/even polynomials and try to exploit |
| // instruction-level parallelism. |
| Packet8f y = p8f_cephes_exp_p0; |
| y = pmadd(y, r, p8f_cephes_exp_p1); |
| y = pmadd(y, r, p8f_cephes_exp_p2); |
| y = pmadd(y, r, p8f_cephes_exp_p3); |
| y = pmadd(y, r, p8f_cephes_exp_p4); |
| y = pmadd(y, r, p8f_cephes_exp_p5); |
| y = pmadd(y, r2, r); |
| y = padd(y, p8f_1); |
| |
| // Build emm0 = 2^m. |
| Packet8i emm0 = _mm256_cvttps_epi32(padd(m, p8f_127)); |
| #ifdef EIGEN_VECTORIZE_AVX2 |
| emm0 = _mm256_slli_epi32(emm0, 23); |
| #else |
| __m128i lo = _mm_slli_epi32(_mm256_extractf128_si256(emm0, 0), 23); |
| __m128i hi = _mm_slli_epi32(_mm256_extractf128_si256(emm0, 1), 23); |
| emm0 = _mm256_setr_m128(lo, hi); |
| #endif |
| |
| // Return 2^m * exp(r). |
| return pmax(pmul(y, _mm256_castsi256_ps(emm0)), _x); |
| } |
| |
| // Functions for sqrt. |
| // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step |
| // of Newton's method, at a cost of 1-2 bits of precision as opposed to the |
| // exact solution. The main advantage of this approach is not just speed, but |
| // also the fact that it can be inlined and pipelined with other computations, |
| // further reducing its effective latency. |
| #if EIGEN_FAST_MATH |
| template <> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f |
| psqrt<Packet8f>(const Packet8f& _x) { |
| _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f); |
| _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f); |
| _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000); |
| |
| Packet8f neg_half = pmul(_x, p8f_minus_half); |
| |
| // select only the inverse sqrt of positive normal inputs (denormals are |
| // flushed to zero and cause infs as well). |
| Packet8f non_zero_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_GE_OQ); |
| Packet8f x = _mm256_and_ps(non_zero_mask, _mm256_rsqrt_ps(_x)); |
| |
| // Do a single step of Newton's iteration. |
| x = pmul(x, pmadd(neg_half, pmul(x, x), p8f_one_point_five)); |
| |
| // Multiply the original _x by it's reciprocal square root to extract the |
| // square root. |
| return pmul(_x, x); |
| } |
| #else |
| template <> |
| EIGEN_STRONG_INLINE Packet8f psqrt<Packet8f>(const Packet8f& x) { |
| return _mm256_sqrt_ps(x); |
| } |
| #endif |
| template <> |
| EIGEN_STRONG_INLINE Packet4d psqrt<Packet4d>(const Packet4d& x) { |
| return _mm256_sqrt_pd(x); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MATH_FUNCTIONS_AVX_H |