| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| |
| template<typename MatrixType> void inverse(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Inverse.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2(rows, cols), |
| mzero = MatrixType::Zero(rows, cols), |
| identity = MatrixType::Identity(rows, rows); |
| |
| if (ei_is_same_type<RealScalar,float>::ret) |
| { |
| // let's build a more stable to inverse matrix |
| MatrixType a = MatrixType::Random(rows,cols); |
| m1 += m1 * m1.adjoint() + a * a.adjoint(); |
| } |
| |
| m2 = m1.inverse(); |
| VERIFY_IS_APPROX(m1, m2.inverse() ); |
| |
| m1.computeInverse(&m2); |
| VERIFY_IS_APPROX(m1, m2.inverse() ); |
| |
| VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); |
| |
| VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); |
| VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); |
| |
| VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); |
| |
| // since for the general case we implement separately row-major and col-major, test that |
| VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); |
| } |
| |
| void test_inverse() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( inverse(Matrix<double,1,1>()) ); |
| CALL_SUBTEST( inverse(Matrix2d()) ); |
| CALL_SUBTEST( inverse(Matrix3f()) ); |
| CALL_SUBTEST( inverse(Matrix4f()) ); |
| CALL_SUBTEST( inverse(MatrixXf(8,8)) ); |
| CALL_SUBTEST( inverse(MatrixXcd(7,7)) ); |
| } |
| |
| // test some tricky cases for 4x4 matrices |
| VERIFY_IS_APPROX((Matrix4f() << 0,0,1,0, 1,0,0,0, 0,1,0,0, 0,0,0,1).finished().inverse(), |
| (Matrix4f() << 0,1,0,0, 0,0,1,0, 1,0,0,0, 0,0,0,1).finished()); |
| VERIFY_IS_APPROX((Matrix4f() << 1,0,0,0, 0,0,1,0, 0,0,0,1, 0,1,0,0).finished().inverse(), |
| (Matrix4f() << 1,0,0,0, 0,0,0,1, 0,1,0,0, 0,0,1,0).finished()); |
| } |