| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void product_selfadjoint(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows); |
| |
| m1 = m1.adjoint()*m1; |
| |
| // col-lower |
| m2.setZero(); |
| m2.template part<LowerTriangular>() = m1; |
| ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,LowerTriangularBit> |
| (cols,m2.data(),cols, v1.data(), v2.data()); |
| VERIFY_IS_APPROX(v2, m1 * v1); |
| |
| // col-upper |
| m2.setZero(); |
| m2.template part<UpperTriangular>() = m1; |
| ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,UpperTriangularBit>(cols,m2.data(),cols, v1.data(), v2.data()); |
| VERIFY_IS_APPROX(v2, m1 * v1); |
| |
| } |
| |
| void test_product_selfadjoint() |
| { |
| for(int i = 0; i < g_repeat ; i++) { |
| CALL_SUBTEST( product_selfadjoint(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( product_selfadjoint(Matrix<float, 2, 2>()) ); |
| CALL_SUBTEST( product_selfadjoint(Matrix3d()) ); |
| CALL_SUBTEST( product_selfadjoint(MatrixXcf(4, 4)) ); |
| CALL_SUBTEST( product_selfadjoint(MatrixXcd(21,21)) ); |
| CALL_SUBTEST( product_selfadjoint(MatrixXd(17,17)) ); |
| CALL_SUBTEST( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(18,18)) ); |
| CALL_SUBTEST( product_selfadjoint(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(19, 19)) ); |
| } |
| } |