blob: 3aa3eba2472967f21ba112009f2eb97ba3fcda53 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
namespace Eigen {
/** \class TensorKChippingReshaping
* \ingroup CXX11_Tensor_Module
*
* \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
*
*
*/
namespace internal {
template<std::size_t DimId, typename XprType>
struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
{
typedef typename XprType::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::Index Index;
typedef typename XprType::Nested Nested;
typedef typename remove_reference<Nested>::type _Nested;
};
template<std::size_t DimId, typename XprType>
struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
{
typedef const TensorChippingOp<DimId, XprType>& type;
};
template<std::size_t DimId, typename XprType>
struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
{
typedef TensorChippingOp<DimId, XprType> type;
};
} // end namespace internal
template<std::size_t DimId, typename XprType>
class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
{
public:
typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorChippingOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset)
: m_xpr(expr), m_offset(offset) {}
EIGEN_DEVICE_FUNC
const Index offset() const { return m_offset; }
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
expression() const { return m_xpr; }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
{
typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
Assign assign(*this, other);
internal::TensorExecutor<const Assign, DefaultDevice, false>::run(assign, DefaultDevice());
return *this;
}
protected:
typename XprType::Nested m_xpr;
const Index m_offset;
};
// Eval as rvalue
template<std::size_t DimId, typename ArgType, typename Device>
struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
{
typedef TensorChippingOp<DimId, ArgType> XprType;
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static const int NumDims = NumInputDims-1;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
enum {
// Alignment can't be guaranteed at compile time since it depends on the
// slice offsets.
IsAligned = false,
PacketAccess = false, // not yet implemented
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_impl(op.expression(), device), m_device(device)
{
// We could also support the case where NumInputDims==1 if needed.
EIGEN_STATIC_ASSERT(NumInputDims >= 2, YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT(NumInputDims > DimId, YOU_MADE_A_PROGRAMMING_MISTAKE);
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
int j = 0;
for (int i = 0; i < NumInputDims; ++i) {
if (i != DimId) {
m_dimensions[j] = input_dims[i];
++j;
}
}
m_stride = 1;
m_inputStride = 1;
for (int i = 0; i < DimId; ++i) {
m_stride *= input_dims[i];
m_inputStride *= input_dims[i];
}
m_inputStride *= input_dims[DimId];
m_inputOffset = m_stride * op.offset();
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
m_impl.evalSubExprsIfNeeded(NULL);
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_impl.cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
return m_impl.coeff(srcCoeff(index));
}
/* to be done
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
}*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const { return NULL; }
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
{
Index inputIndex;
if (DimId == 0) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(m_stride == 1);
inputIndex = index * m_inputStride + m_inputOffset;
} else if (DimId == NumInputDims-1) {
// m_stride is aways greater than index, so let's avoid the integer division.
eigen_assert(m_stride > index);
inputIndex = index + m_inputOffset;
} else {
const Index idx = index / m_stride;
inputIndex = idx * m_inputStride + m_inputOffset;
index -= idx * m_stride;
inputIndex += index;
}
return inputIndex;
}
Dimensions m_dimensions;
Index m_stride;
Index m_inputOffset;
Index m_inputStride;
TensorEvaluator<ArgType, Device> m_impl;
const Device& m_device;
};
// Eval as lvalue
template<std::size_t DimId, typename ArgType, typename Device>
struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
: public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
{
typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
typedef TensorChippingOp<DimId, ArgType> XprType;
static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
static const int NumDims = NumInputDims-1;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
enum {
IsAligned = false,
PacketAccess = false,
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: Base(op, device)
{ }
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
{
return this->m_impl.coeffRef(this->srcCoeff(index));
}
/* to be done
template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void writePacket(Index index, const PacketReturnType& x)
{
} */
};
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H