blob: 50cb10a33bbc89cd3fa69d91b4632d6fc0d68c6d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H
namespace Eigen {
/** \class TensorConvolution
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor convolution class.
*
*
*/
namespace internal {
template <typename Index, typename InputDims, size_t NumKernelDims> class IndexMapper {
public:
IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
const array<Index, NumKernelDims>& indices) {
array<Index, NumDims> dimensions = input_dims;
for (int i = 0; i < NumKernelDims; ++i) {
const Index index = indices[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
const Index result_dim = input_dim - kernel_dim + 1;
dimensions[index] = result_dim;
}
array<Index, NumDims> inputStrides;
array<Index, NumDims> outputStrides;
for (int i = 0; i < NumDims; ++i) {
if (i > 0) {
inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
} else {
inputStrides[0] = 1;
outputStrides[0] = 1;
}
}
array<Index, NumDims> cudaInputDimensions;
array<Index, NumDims> cudaOutputDimensions;
array<Index, NumDims> tmp = dimensions;
array<Index, NumDims> ordering;
for (int i = 0; i < NumKernelDims; ++i) {
ordering[i] = indices[i];
tmp[indices[i]] = -1;
cudaInputDimensions[i] = input_dims[ordering[i]];
cudaOutputDimensions[i] = dimensions[ordering[i]];
}
int written = NumKernelDims;
for (int i = 0; i < NumDims; ++i) {
if (tmp[i] >= 0) {
ordering[written] = i;
cudaInputDimensions[written] = input_dims[i];
cudaOutputDimensions[written] = dimensions[i];
++written;
}
}
for (int i = 0; i < NumDims; ++i) {
m_inputStrides[i] = inputStrides[ordering[i]];
m_outputStrides[i] = outputStrides[ordering[i]];
}
for (int i = 0; i < NumDims; ++i) {
if (i > NumKernelDims) {
m_cudaInputStrides[i] = m_cudaInputStrides[i-1] * cudaInputDimensions[i-1];
m_cudaOutputStrides[i] = m_cudaOutputStrides[i-1] * cudaOutputDimensions[i-1];
} else {
m_cudaInputStrides[i] = 1;
m_cudaOutputStrides[i] = 1;
}
}
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputPlaneToTensorInputOffset(Index p) const {
Index inputIndex = 0;
for (int d = NumDims - 1; d > NumKernelDims; --d) {
const Index idx = p / m_cudaInputStrides[d];
inputIndex += idx * m_inputStrides[d];
p -= idx * m_cudaInputStrides[d];
}
inputIndex += p * m_inputStrides[NumKernelDims];
return inputIndex;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputPlaneToTensorOutputOffset(Index p) const {
Index outputIndex = 0;
for (int d = NumDims - 1; d > NumKernelDims; --d) {
const Index idx = p / m_cudaOutputStrides[d];
outputIndex += idx * m_outputStrides[d];
p -= idx * m_cudaOutputStrides[d];
}
outputIndex += p * m_outputStrides[NumKernelDims];
return outputIndex;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i) const {
return i * m_inputStrides[0];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i) const {
return i * m_outputStrides[0];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j) const {
return i * m_inputStrides[0] + j*m_inputStrides[1];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j) const {
return i * m_outputStrides[0] + j * m_outputStrides[1];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
return i * m_inputStrides[0] + j*m_inputStrides[1] + k*m_inputStrides[2];
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
return i * m_outputStrides[0] + j*m_outputStrides[1] + k*m_outputStrides[2];
}
private:
static const size_t NumDims = internal::array_size<InputDims>::value;
array<Index, NumDims> m_inputStrides;
array<Index, NumDims> m_outputStrides;
array<Index, NumDims> m_cudaInputStrides;
array<Index, NumDims> m_cudaOutputStrides;
};
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
{
// Type promotion to handle the case where the types of the lhs and the rhs are different.
typedef typename internal::promote_storage_type<typename InputXprType::Scalar,
typename KernelXprType::Scalar>::ret Scalar;
typedef typename internal::packet_traits<Scalar>::type Packet;
typedef typename promote_storage_type<typename traits<InputXprType>::StorageKind,
typename traits<KernelXprType>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<InputXprType>::Index,
typename traits<KernelXprType>::Index>::type Index;
typedef typename InputXprType::Nested LhsNested;
typedef typename KernelXprType::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
Flags = 0,
};
};
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, Eigen::Dense>
{
typedef const TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>& type;
};
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct nested<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType>, 1, typename eval<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >::type>
{
typedef TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> type;
};
} // end namespace internal
template<typename Indices, typename InputXprType, typename KernelXprType>
class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, InputXprType, KernelXprType> >
{
public:
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Scalar Scalar;
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Packet Packet;
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
typedef typename internal::promote_storage_type<typename InputXprType::CoeffReturnType,
typename KernelXprType::CoeffReturnType>::ret CoeffReturnType;
typedef typename internal::promote_storage_type<typename InputXprType::PacketReturnType,
typename KernelXprType::PacketReturnType>::ret PacketReturnType;
typedef typename Eigen::internal::nested<TensorConvolutionOp>::type Nested;
typedef typename Eigen::internal::traits<TensorConvolutionOp>::StorageKind StorageKind;
typedef typename Eigen::internal::traits<TensorConvolutionOp>::Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
: m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Indices& indices() const { return m_indices; }
/** \returns the nested expressions */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const typename internal::remove_all<typename InputXprType::Nested>::type&
inputExpression() const { return m_input_xpr; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const typename internal::remove_all<typename KernelXprType::Nested>::type&
kernelExpression() const { return m_kernel_xpr; }
protected:
typename InputXprType::Nested m_input_xpr;
typename KernelXprType::Nested m_kernel_xpr;
const Indices m_indices;
};
template<typename Indices, typename InputArgType, typename KernelArgType, typename Device>
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, Device>
{
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
static const int NumKernelDims = internal::array_size<Indices>::value;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
enum {
IsAligned = TensorEvaluator<InputArgType, Device>::IsAligned & TensorEvaluator<KernelArgType, Device>::IsAligned,
PacketAccess = TensorEvaluator<InputArgType, Device>::PacketAccess & TensorEvaluator<KernelArgType, Device>::PacketAccess,
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
: m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_kernelArg(op.kernelExpression()), m_kernel(NULL), m_local_kernel(false), m_device(device)
{
const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
m_inputStride[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_inputStride[i] = m_inputStride[i-1] * input_dims[i-1];
}
m_dimensions = m_inputImpl.dimensions();
for (int i = 0; i < NumKernelDims; ++i) {
const Index index = op.indices()[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
const Index result_dim = input_dim - kernel_dim + 1;
m_dimensions[index] = result_dim;
if (i > 0) {
m_kernelStride[i] = m_kernelStride[i-1] * kernel_dims[i-1];
} else {
m_kernelStride[0] = 1;
}
m_indexStride[i] = m_inputStride[index];
}
m_outputStride[0] = 1;
for (int i = 1; i < NumDims; ++i) {
m_outputStride[i] = m_outputStride[i-1] * m_dimensions[i-1];
}
}
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
m_inputImpl.evalSubExprsIfNeeded(NULL);
preloadKernel();
return true;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
m_inputImpl.cleanup();
if (m_local_kernel) {
m_device.deallocate((void*)m_kernel);
m_local_kernel = false;
}
m_kernel = NULL;
}
void evalTo(typename XprType::Scalar* buffer) {
evalSubExprsIfNeeded(NULL);
for (int i = 0; i < dimensions().TotalSize(); ++i) {
buffer[i] += coeff(i);
}
cleanup();
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
CoeffReturnType result = CoeffReturnType(0);
convolve(firstInput(index), 0, NumKernelDims-1, result);
return result;
}
template<int LoadMode>
EIGEN_DEVICE_FUNC PacketReturnType packet(const Index index) const
{
const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
Index indices[2] = {index, index+PacketSize-1};
Index startInputs[2] = {0, 0};
for (int i = NumDims - 1; i > 0; --i) {
const Index idx0 = indices[0] / m_outputStride[i];
const Index idx1 = indices[1] / m_outputStride[i];
startInputs[0] += idx0 * m_inputStride[i];
startInputs[1] += idx1 * m_inputStride[i];
indices[0] -= idx0 * m_outputStride[i];
indices[1] -= idx1 * m_outputStride[i];
}
startInputs[0] += indices[0];
startInputs[1] += indices[1];
if (startInputs[1]-startInputs[0] == PacketSize-1) {
PacketReturnType result = internal::pset1<PacketReturnType>(0);
convolvePacket(startInputs[0], 0, NumKernelDims-1, result);
return result;
} else {
EIGEN_ALIGN_DEFAULT Scalar data[PacketSize];
data[0] = Scalar(0);
convolve(startInputs[0], 0, NumKernelDims-1, data[0]);
for (int i = 1; i < PacketSize-1; ++i) {
data[i] = Scalar(0);
convolve(firstInput(index+i), 0, NumKernelDims-1, data[i]);
}
data[PacketSize-1] = Scalar(0);
convolve(startInputs[1], 0, NumKernelDims-1, data[PacketSize-1]);
return internal::pload<PacketReturnType>(data);
}
}
Scalar* data() const { return NULL; }
private:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const {
Index startInput = 0;
for (int i = NumDims - 1; i > 0; --i) {
const Index idx = index / m_outputStride[i];
startInput += idx * m_inputStride[i];
index -= idx * m_outputStride[i];
}
startInput += index;
return startInput;
}
EIGEN_DEVICE_FUNC void convolve(Index firstIndex, Index firstKernel, int DimIndex, CoeffReturnType& accum) const {
for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
const Index input = firstIndex + j * m_indexStride[DimIndex];
const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
if (DimIndex > 0) {
convolve(input, kernel, DimIndex-1, accum);
} else {
accum += m_inputImpl.coeff(input) * m_kernel[kernel];
}
}
}
template <typename Packet>
EIGEN_DEVICE_FUNC void convolvePacket(Index firstIndex, Index firstKernel, int DimIndex, Packet& accum) const {
for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
const Index input = firstIndex + j * m_indexStride[DimIndex];
const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
if (DimIndex > 0) {
convolvePacket(input, kernel, DimIndex-1, accum);
} else {
accum = internal::pmadd<Packet>(m_inputImpl.template packet<Unaligned>(input), internal::pset1<Packet>(m_kernel[kernel]), accum);
}
}
}
EIGEN_STRONG_INLINE void preloadKernel() {
// Don't make a local copy of the kernel unless we have to (i.e. it's an
// expression that needs to be evaluated)
const Scalar* in_place = m_kernelImpl.data();
if (in_place) {
m_kernel = in_place;
m_local_kernel = false;
} else {
size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
typedef TensorEvalToOp<const KernelArgType> EvalTo;
EvalTo evalToTmp(local, m_kernelArg);
internal::TensorExecutor<const EvalTo, Device, TensorEvaluator<KernelArgType, Device>::PacketAccess>::run(evalToTmp, m_device);
m_kernel = local;
m_local_kernel = true;
}
}
// No copy, no assignment
TensorEvaluator(const TensorEvaluator&);
TensorEvaluator& operator = (const TensorEvaluator&);
array<Index, NumDims> m_inputStride;
array<Index, NumDims> m_outputStride;
array<Index, NumKernelDims> m_indexStride;
array<Index, NumKernelDims> m_kernelStride;
TensorEvaluator<InputArgType, Device> m_inputImpl;
TensorEvaluator<KernelArgType, Device> m_kernelImpl;
Dimensions m_dimensions;
KernelArgType m_kernelArg;
const Scalar* m_kernel;
bool m_local_kernel;
const Device& m_device;
};
// Use an optimized implementation of the evaluation code for GPUs whenever possible.
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
template <int StaticKernelSize>
struct GetKernelSize {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
return StaticKernelSize;
}
};
template <>
struct GetKernelSize<Eigen::Dynamic> {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
return kernelSize;
}
};
template <typename InputEvaluator, typename Index, typename InputDims, int StaticKernelSize>
__global__ void EigenConvolutionKernel1D(InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 1> indexMapper, const float* __restrict kernel, const int numPlanes, const int numX, const int maxX, const int kernelSize, float* buffer) {
extern __shared__ float s[];
const int first_x = blockIdx.x * maxX;
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
const int num_x_output = last_x - first_x + 1;
const int first_plane = blockIdx.y * blockDim.y;
const int plane_stride = blockDim.y * gridDim.y;
for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
// Load inputs to shared memory
const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
const int plane_kernel_offset = threadIdx.y * num_x_input;
#pragma unroll
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x);
s[i + plane_kernel_offset] = eval.coeff(tensor_index);
}
__syncthreads();
// Compute the convolution
const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
#pragma unroll
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
const int kernel_offset = plane_kernel_offset + i;
float result = 0.0f;
#pragma unroll
for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
result += s[k + kernel_offset] * kernel[k];
}
const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x);
buffer[tensor_index] = result;
}
__syncthreads();
}
};
template <typename InputEvaluator, typename Index, typename InputDims, int StaticKernelSizeX, int StaticKernelSizeY>
__global__ void EigenConvolutionKernel2D(InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 2> indexMapper, const float* __restrict kernel, const int numPlanes, const int numX, const int maxX, const int numY, const int maxY, const int kernelSizeX, const int kernelSizeY, float* buffer) {
extern __shared__ float s[];
const int first_x = blockIdx.x * maxX;
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
const int num_x_output = last_x - first_x + 1;
const int first_y = blockIdx.y * maxY;
const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
const int num_y_output = last_y - first_y + 1;
const int first_plane = blockIdx.z * blockDim.z;
const int plane_stride = blockDim.z * gridDim.z;
for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
const int plane_kernel_offset = threadIdx.z * num_y_input;
// Load inputs to shared memory
#pragma unroll
for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
const int input_offset = num_x_input * (j + plane_kernel_offset);
#pragma unroll
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y);
s[i + input_offset] = eval.coeff(tensor_index);
}
}
__syncthreads();
// Convolution
const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
#pragma unroll
for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
#pragma unroll
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
float result = 0.0f;
#pragma unroll
for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
const int kernel_offset = kernelSizeX * l;
const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
#pragma unroll
for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
result += s[k + input_offset] * kernel[k + kernel_offset];
}
}
const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
buffer[tensor_index] = result;
}
}
__syncthreads();
}
};
template <typename InputEvaluator, typename Index, typename InputDims>
__global__ void EigenConvolutionKernel3D(InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 3> indexMapper, const float* __restrict kernel, const size_t numPlanes, const size_t numX, const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ, const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY, const size_t kernelSizeZ, float* buffer) {
extern __shared__ float s[];
// Load inputs to shared memory
const int first_x = blockIdx.x * maxX;
const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
const int num_x_input = last_x - first_x + kernelSizeX;
const int first_y = blockIdx.y * maxY;
const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
const int num_y_input = last_y - first_y + kernelSizeY;
const int first_z = blockIdx.z * maxZ;
const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
const int num_z_input = last_z - first_z + kernelSizeZ;
for (int p = 0; p < numPlanes; ++p) {
const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
const int plane_kernel_offset = 0;
for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
}
}
}
__syncthreads();
// Convolution
const int num_z_output = last_z - first_z + 1;
const int num_y_output = last_y - first_y + 1;
const int num_x_output = last_x - first_x + 1;
const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
float result = 0.0f;
for (int n = 0; n < kernelSizeZ; ++n) {
for (int m = 0; m < kernelSizeY; ++m) {
for (int l = 0; l < kernelSizeX; ++l) {
result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
}
}
}
const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
buffer[tensor_index] = result;
}
}
}
__syncthreads();
}
};
template<typename Indices, typename InputArgType, typename KernelArgType>
struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
{
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
static const int NumKernelDims = internal::array_size<Indices>::value;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
enum {
IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
PacketAccess = false,
};
EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device)
: m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
{
const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
m_dimensions = m_inputImpl.dimensions();
for (int i = 0; i < NumKernelDims; ++i) {
const Index index = op.indices()[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
const Index result_dim = input_dim - kernel_dim + 1;
m_dimensions[index] = result_dim;
}
}
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
typedef typename InputArgType::Scalar Scalar;
EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
preloadKernel();
m_inputImpl.evalSubExprsIfNeeded(NULL);
if (data) {
executeEval(data);
return false;
} else {
m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
executeEval(m_buf);
return true;
}
}
EIGEN_STRONG_INLINE void cleanup() {
m_inputImpl.cleanup();
if (m_buf) {
m_device.deallocate(m_buf);
m_buf = NULL;
}
if (m_local_kernel) {
m_device.deallocate((void*)m_kernel);
m_local_kernel = false;
}
m_kernel = NULL;
}
EIGEN_STRONG_INLINE void preloadKernel() {
// Don't make a local copy of the kernel unless we have to (i.e. it's an
// expression that needs to be evaluated)
const Scalar* in_place = m_kernelImpl.data();
if (in_place) {
m_kernel = in_place;
m_local_kernel = false;
} else {
size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
typedef TensorEvalToOp<const KernelArgType> EvalTo;
EvalTo evalToTmp(local, m_kernelArg);
internal::TensorExecutor<const EvalTo, GpuDevice, TensorEvaluator<KernelArgType, GpuDevice>::PacketAccess>::run(evalToTmp, m_device);
m_kernel = local;
m_local_kernel = true;
}
}
static unsigned int ceil(unsigned int num, unsigned int denom) {
const unsigned int rounded_toward_zero = num / denom;
if (num > rounded_toward_zero * denom) {
return rounded_toward_zero + 1;
}
return rounded_toward_zero;
}
void executeEval(Scalar* data) const {
typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
const int maxSharedMem = sharedMemPerBlock();
const int maxThreadsPerBlock = maxCudaThreadsPerBlock();
const int maxBlocksPerProcessor = maxCudaThreadsPerMultiProcessor() / maxThreadsPerBlock;
const int numMultiProcessors = getNumCudaMultiProcessors();
const int warpSize = 32;
switch (NumKernelDims) {
case 1: {
const int kernel_size = m_kernelImpl.dimensions().TotalSize();
const int numX = dimensions()[m_indices[0]];
const int numP = dimensions().TotalSize() / numX;
int maxX;
dim3 block_size;
if (m_indices[0] == 0) {
// Maximum the reuse
const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
maxX = (std::min<int>)(inner_dim, numX);
const int maxP = (std::min<int>)(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
block_size.x = (std::min)(maxThreadsPerBlock, maxX);
block_size.y = (std::min<int>)(maxThreadsPerBlock / block_size.x, maxP);
}
else {
// Read as much as possible alongside the inner most dimension, that is the plane
const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
const int maxP = (std::min<int>)(inner_dim, numP);
maxX = (std::min<int>)(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
block_size.x = (std::min)(warpSize, maxX);
block_size.y = (std::min<int>)(maxThreadsPerBlock/block_size.x, maxP);
}
const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
assert(shared_mem <= maxSharedMem);
const int num_x_blocks = ceil(numX, maxX);
const int blocksPerProcessor = (std::min)(maxBlocksPerProcessor, maxSharedMem / shared_mem);
const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
dim3 num_blocks(num_x_blocks, min<int>(num_y_blocks, ceil(numP, block_size.y)));
//cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
const array<Index, 1> indices(m_indices[0]);
const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
internal::IndexMapper<Index, InputDims, 1> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
switch(kernel_size) {
case 4: {
EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
break;
}
case 7: {
EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
break;
}
default: {
EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
}
}
cudaError_t error = cudaGetLastError();
assert(error == cudaSuccess);
break;
}
case 2: {
const int kernel_size_x = m_kernelImpl.dimensions()[0];
const int kernel_size_y = m_kernelImpl.dimensions()[1];
const int numX = dimensions()[m_indices[0]];
const int numY = dimensions()[m_indices[1]];
const int numP = dimensions().TotalSize() / (numX*numY);
const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
// Snap maxX to warp size
int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
const int maxX = (std::min<int>)(inner_dim, numX);
const int maxY = (std::min<int>)(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
const int maxP = (std::min<int>)(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
dim3 block_size;
block_size.x = (std::min)(1024, maxX);
block_size.y = (std::min<int>)(1024/block_size.x, maxY);
block_size.z = (std::min<int>)(1024/(block_size.x*block_size.y), maxP);
const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
assert(shared_mem <= maxSharedMem);
const int num_x_blocks = ceil(numX, maxX);
const int num_y_blocks = ceil(numY, maxY);
const int blocksPerProcessor = (std::min)(maxBlocksPerProcessor, maxSharedMem / shared_mem);
const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
dim3 num_blocks(num_x_blocks, num_y_blocks, min<int>(num_z_blocks, ceil(numP, block_size.z)));
//cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
const array<Index, 2> indices(m_indices[0], m_indices[1]);
const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[0], m_kernelImpl.dimensions()[1]);
internal::IndexMapper<Index, InputDims, 2> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
switch (kernel_size_x) {
case 4: {
switch (kernel_size_y) {
case 7: {
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
break;
}
default: {
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
break;
}
}
break;
}
case 7: {
switch (kernel_size_y) {
case 4: {
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
break;
}
default: {
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
break;
}
}
break;
}
default: {
EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Eigen::Dynamic, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
break;
}
}
cudaError_t error = cudaGetLastError();
assert(error == cudaSuccess);
break;
}
case 3: {
const int kernel_size_x = m_kernelImpl.dimensions()[0];
const int kernel_size_y = m_kernelImpl.dimensions()[1];
const int kernel_size_z = m_kernelImpl.dimensions()[2];
const int numX = dimensions()[m_indices[0]];
const int numY = dimensions()[m_indices[1]];
const int numZ = dimensions()[m_indices[2]];
const int numP = dimensions().TotalSize() / (numX*numY*numZ);
const int maxX = (std::min<int>)(128, (std::min<int>)(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
const int maxY = (std::min<int>)(128, (std::min<int>)(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
const int maxZ = (std::min<int>)(128, (std::min<int>)(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
dim3 block_size;
block_size.x = (std::min)(32, maxX);
block_size.y = (std::min)(32, maxY);
block_size.z = (std::min<int>)(1024/(block_size.x*block_size.y), maxZ);
dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
assert(shared_mem <= maxSharedMem);
//cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
const array<Index, 3> indices(m_indices[0], m_indices[1], m_indices[2]);
const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[0], m_kernelImpl.dimensions()[1], m_kernelImpl.dimensions()[2]);
internal::IndexMapper<Index, InputDims, 3> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
cudaError_t error = cudaGetLastError();
assert(error == cudaSuccess);
break;
}
default: {
assert(false && "not supported yet");
}
}
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
{
eigen_assert(m_buf);
eigen_assert(index < m_dimensions.TotalSize());
return m_buf[index];
}
template<int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(const Index index) const
{
eigen_assert(m_buf);
eigen_assert(index < m_dimensions.TotalSize());
return internal::ploadt<PacketReturnType, LoadMode>(m_buf+index);
}
private:
// No assignment (copies are needed by the kernels)
TensorEvaluator& operator = (const TensorEvaluator&);
TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
KernelArgType m_kernelArg;
Indices m_indices;
Dimensions m_dimensions;
Scalar* m_buf;
const Scalar* m_kernel;
bool m_local_kernel;
const GpuDevice& m_device;
};
#endif
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H