|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_LDLT_H | 
|  | #define EIGEN_LDLT_H | 
|  |  | 
|  | template<typename MatrixType, int UpLo> struct LDLT_Traits; | 
|  |  | 
|  | /** \ingroup cholesky_Module | 
|  | * | 
|  | * \class LDLT | 
|  | * | 
|  | * \brief Robust Cholesky decomposition of a matrix with pivoting | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition | 
|  | * | 
|  | * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite | 
|  | * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L | 
|  | * is lower triangular with a unit diagonal and D is a diagonal matrix. | 
|  | * | 
|  | * The decomposition uses pivoting to ensure stability, so that L will have | 
|  | * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root | 
|  | * on D also stabilizes the computation. | 
|  | * | 
|  | * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky | 
|  | * decomposition to determine whether a system of equations has a solution. | 
|  | * | 
|  | * \sa MatrixBase::ldlt(), class LLT | 
|  | */ | 
|  | /* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE | 
|  | * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, | 
|  | * the strict lower part does not have to store correct values. | 
|  | */ | 
|  | template<typename _MatrixType, int _UpLo> class LDLT | 
|  | { | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | UpLo = _UpLo | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; | 
|  |  | 
|  | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
|  | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
|  |  | 
|  | typedef LDLT_Traits<MatrixType,UpLo> Traits; | 
|  |  | 
|  | /** \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via LDLT::compute(const MatrixType&). | 
|  | */ | 
|  | LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa LDLT() | 
|  | */ | 
|  | LDLT(Index size) | 
|  | : m_matrix(size, size), | 
|  | m_transpositions(size), | 
|  | m_temporary(size), | 
|  | m_isInitialized(false) | 
|  | {} | 
|  |  | 
|  | LDLT(const MatrixType& matrix) | 
|  | : m_matrix(matrix.rows(), matrix.cols()), | 
|  | m_transpositions(matrix.rows()), | 
|  | m_temporary(matrix.rows()), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the upper triangular matrix U */ | 
|  | inline typename Traits::MatrixU matrixU() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return Traits::getU(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns a view of the lower triangular matrix L */ | 
|  | inline typename Traits::MatrixL matrixL() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return Traits::getL(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \returns the permutation matrix P as a transposition sequence. | 
|  | */ | 
|  | inline const TranspositionType& transpositionsP() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_transpositions; | 
|  | } | 
|  |  | 
|  | /** \returns the coefficients of the diagonal matrix D */ | 
|  | inline Diagonal<MatrixType,0> vectorD(void) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_matrix.diagonal(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix is positive (semidefinite) */ | 
|  | inline bool isPositive(void) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_sign == 1; | 
|  | } | 
|  |  | 
|  | /** \returns true if the matrix is negative (semidefinite) */ | 
|  | inline bool isNegative(void) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_sign == -1; | 
|  | } | 
|  |  | 
|  | /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. | 
|  | * | 
|  | * \note_about_checking_solutions | 
|  | * | 
|  | * \sa solveInPlace(), MatrixBase::ldlt() | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const ei_solve_retval<LDLT, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | ei_assert(m_matrix.rows()==b.rows() | 
|  | && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); | 
|  | return ei_solve_retval<LDLT, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | template<typename Derived> | 
|  | bool solveInPlace(MatrixBase<Derived> &bAndX) const; | 
|  |  | 
|  | LDLT& compute(const MatrixType& matrix); | 
|  |  | 
|  | /** \returns the internal LDLT decomposition matrix | 
|  | * | 
|  | * TODO: document the storage layout | 
|  | */ | 
|  | inline const MatrixType& matrixLDLT() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | return m_matrix; | 
|  | } | 
|  |  | 
|  | MatrixType reconstructedMatrix() const; | 
|  |  | 
|  | inline Index rows() const { return m_matrix.rows(); } | 
|  | inline Index cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | /** \internal | 
|  | * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. | 
|  | * The strict upper part is used during the decomposition, the strict lower | 
|  | * part correspond to the coefficients of L (its diagonal is equal to 1 and | 
|  | * is not stored), and the diagonal entries correspond to D. | 
|  | */ | 
|  | MatrixType m_matrix; | 
|  | TranspositionType m_transpositions; | 
|  | TmpMatrixType m_temporary; | 
|  | int m_sign; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | template<int UpLo> struct ei_ldlt_inplace; | 
|  |  | 
|  | template<> struct ei_ldlt_inplace<Lower> | 
|  | { | 
|  | template<typename MatrixType, typename TranspositionType, typename Workspace> | 
|  | static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  | ei_assert(mat.rows()==mat.cols()); | 
|  | const Index size = mat.rows(); | 
|  |  | 
|  | if (size <= 1) | 
|  | { | 
|  | transpositions.setIdentity(); | 
|  | if(sign) | 
|  | *sign = ei_real(mat.coeff(0,0))>0 ? 1:-1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | RealScalar cutoff = 0, biggest_in_corner; | 
|  |  | 
|  | for (Index k = 0; k < size; ++k) | 
|  | { | 
|  | // Find largest diagonal element | 
|  | Index index_of_biggest_in_corner; | 
|  | biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | 
|  | index_of_biggest_in_corner += k; | 
|  |  | 
|  | if(k == 0) | 
|  | { | 
|  | // The biggest overall is the point of reference to which further diagonals | 
|  | // are compared; if any diagonal is negligible compared | 
|  | // to the largest overall, the algorithm bails. | 
|  | cutoff = ei_abs(NumTraits<Scalar>::epsilon() * biggest_in_corner); | 
|  |  | 
|  | if(sign) | 
|  | *sign = ei_real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1; | 
|  | } | 
|  |  | 
|  | // Finish early if the matrix is not full rank. | 
|  | if(biggest_in_corner < cutoff) | 
|  | { | 
|  | for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | transpositions.coeffRef(k) = index_of_biggest_in_corner; | 
|  | if(k != index_of_biggest_in_corner) | 
|  | { | 
|  | // apply the transposition while taking care to consider only | 
|  | // the lower triangular part | 
|  | Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element | 
|  | mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); | 
|  | mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); | 
|  | std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); | 
|  | for(int i=k+1;i<index_of_biggest_in_corner;++i) | 
|  | { | 
|  | Scalar tmp = mat.coeffRef(i,k); | 
|  | mat.coeffRef(i,k) = ei_conj(mat.coeffRef(index_of_biggest_in_corner,i)); | 
|  | mat.coeffRef(index_of_biggest_in_corner,i) = ei_conj(tmp); | 
|  | } | 
|  | if(NumTraits<Scalar>::IsComplex) | 
|  | mat.coeffRef(index_of_biggest_in_corner,k) = ei_conj(mat.coeff(index_of_biggest_in_corner,k)); | 
|  | } | 
|  |  | 
|  | // partition the matrix: | 
|  | //       A00 |  -  |  - | 
|  | // lu  = A10 | A11 |  - | 
|  | //       A20 | A21 | A22 | 
|  | Index rs = size - k - 1; | 
|  | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
|  | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
|  | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
|  |  | 
|  | if(k>0) | 
|  | { | 
|  | temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint(); | 
|  | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | 
|  | if(rs>0) | 
|  | A21.noalias() -= A20 * temp.head(k); | 
|  | } | 
|  | if((rs>0) && (ei_abs(mat.coeffRef(k,k)) > cutoff)) | 
|  | A21 /= mat.coeffRef(k,k); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct ei_ldlt_inplace<Upper> | 
|  | { | 
|  | template<typename MatrixType, typename TranspositionType, typename Workspace> | 
|  | static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0) | 
|  | { | 
|  | Transpose<MatrixType> matt(mat); | 
|  | return ei_ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> | 
|  | { | 
|  | typedef TriangularView<MatrixType, UnitLower> MatrixL; | 
|  | typedef TriangularView<typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; | 
|  | inline static MatrixL getL(const MatrixType& m) { return m; } | 
|  | inline static MatrixU getU(const MatrixType& m) { return m.adjoint(); } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> | 
|  | { | 
|  | typedef TriangularView<typename MatrixType::AdjointReturnType, UnitLower> MatrixL; | 
|  | typedef TriangularView<MatrixType, UnitUpper> MatrixU; | 
|  | inline static MatrixL getL(const MatrixType& m) { return m.adjoint(); } | 
|  | inline static MatrixU getU(const MatrixType& m) { return m; } | 
|  | }; | 
|  |  | 
|  | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix | 
|  | */ | 
|  | template<typename MatrixType, int _UpLo> | 
|  | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) | 
|  | { | 
|  | ei_assert(a.rows()==a.cols()); | 
|  | const Index size = a.rows(); | 
|  |  | 
|  | m_matrix = a; | 
|  |  | 
|  | m_transpositions.resize(size); | 
|  | m_isInitialized = false; | 
|  | m_temporary.resize(size); | 
|  |  | 
|  | ei_ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename _MatrixType, int _UpLo, typename Rhs> | 
|  | struct ei_solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> | 
|  | : ei_solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> | 
|  | { | 
|  | typedef LDLT<_MatrixType,_UpLo> LDLTType; | 
|  | EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | ei_assert(rhs().rows() == dec().matrixLDLT().rows()); | 
|  | // dst = P b | 
|  | dst = dec().transpositionsP() * rhs(); | 
|  |  | 
|  | // dst = L^-1 (P b) | 
|  | dec().matrixL().solveInPlace(dst); | 
|  |  | 
|  | // dst = D^-1 (L^-1 P b) | 
|  | dst = dec().vectorD().asDiagonal().inverse() * dst; | 
|  |  | 
|  | // dst = L^-T (D^-1 L^-1 P b) | 
|  | dec().matrixU().solveInPlace(dst); | 
|  |  | 
|  | // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b | 
|  | dst = dec().transpositionsP().transpose() * dst; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** This is the \em in-place version of solve(). | 
|  | * | 
|  | * \param bAndX represents both the right-hand side matrix b and result x. | 
|  | * | 
|  | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. | 
|  | * | 
|  | * This version avoids a copy when the right hand side matrix b is not | 
|  | * needed anymore. | 
|  | * | 
|  | * \sa LDLT::solve(), MatrixBase::ldlt() | 
|  | */ | 
|  | template<typename MatrixType,int _UpLo> | 
|  | template<typename Derived> | 
|  | bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | const Index size = m_matrix.rows(); | 
|  | ei_assert(size == bAndX.rows()); | 
|  |  | 
|  | bAndX = this->solve(bAndX); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** \returns the matrix represented by the decomposition, | 
|  | * i.e., it returns the product: P^T L D L^* P. | 
|  | * This function is provided for debug purpose. */ | 
|  | template<typename MatrixType, int _UpLo> | 
|  | MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LDLT is not initialized."); | 
|  | const Index size = m_matrix.rows(); | 
|  | MatrixType res(size,size); | 
|  |  | 
|  | // P | 
|  | res.setIdentity(); | 
|  | res = transpositionsP() * res; | 
|  | // L^* P | 
|  | res = matrixU() * res; | 
|  | // D(L^*P) | 
|  | res = vectorD().asDiagonal() * res; | 
|  | // L(DL^*P) | 
|  | res = matrixL() * res; | 
|  | // P^T (LDL^*P) | 
|  | res = transpositionsP().transpose() * res; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
|  | */ | 
|  | template<typename MatrixType, unsigned int UpLo> | 
|  | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
|  | SelfAdjointView<MatrixType, UpLo>::ldlt() const | 
|  | { | 
|  | return LDLT<PlainObject,UpLo>(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \cholesky_module | 
|  | * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const LDLT<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::ldlt() const | 
|  | { | 
|  | return LDLT<PlainObject>(derived()); | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_LDLT_H |