|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_CWISE_UNARY_OP_H | 
|  | #define EIGEN_CWISE_UNARY_OP_H | 
|  |  | 
|  | /** \class CwiseUnaryOp | 
|  | * | 
|  | * \brief Generic expression where a coefficient-wise unary operator is applied to an expression | 
|  | * | 
|  | * \param UnaryOp template functor implementing the operator | 
|  | * \param XprType the type of the expression to which we are applying the unary operator | 
|  | * | 
|  | * This class represents an expression where a unary operator is applied to an expression. | 
|  | * It is the return type of all operations taking exactly 1 input expression, regardless of the | 
|  | * presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix | 
|  | * is considered unary, because only the right-hand side is an expression, and its | 
|  | * return type is a specialization of CwiseUnaryOp. | 
|  | * | 
|  | * Most of the time, this is the only way that it is used, so you typically don't have to name | 
|  | * CwiseUnaryOp types explicitly. | 
|  | * | 
|  | * \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp | 
|  | */ | 
|  | template<typename UnaryOp, typename XprType> | 
|  | struct ei_traits<CwiseUnaryOp<UnaryOp, XprType> > | 
|  | : ei_traits<XprType> | 
|  | { | 
|  | typedef typename ei_result_of< | 
|  | UnaryOp(typename XprType::Scalar) | 
|  | >::type Scalar; | 
|  | typedef typename XprType::Nested XprTypeNested; | 
|  | typedef typename ei_unref<XprTypeNested>::type _XprTypeNested; | 
|  | enum { | 
|  | Flags = _XprTypeNested::Flags & ( | 
|  | HereditaryBits | LinearAccessBit | AlignedBit | 
|  | | (ei_functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)), | 
|  | CoeffReadCost = _XprTypeNested::CoeffReadCost + ei_functor_traits<UnaryOp>::Cost | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<typename UnaryOp, typename XprType, typename StorageKind> | 
|  | class CwiseUnaryOpImpl; | 
|  |  | 
|  | template<typename UnaryOp, typename XprType> | 
|  | class CwiseUnaryOp : ei_no_assignment_operator, | 
|  | public CwiseUnaryOpImpl<UnaryOp, XprType, typename ei_traits<XprType>::StorageKind> | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename ei_traits<XprType>::StorageKind>::Base Base; | 
|  | EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp) | 
|  |  | 
|  | inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp()) | 
|  | : m_xpr(xpr), m_functor(func) {} | 
|  |  | 
|  | EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); } | 
|  | EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); } | 
|  |  | 
|  | /** \returns the functor representing the unary operation */ | 
|  | const UnaryOp& functor() const { return m_functor; } | 
|  |  | 
|  | /** \returns the nested expression */ | 
|  | const typename ei_cleantype<typename XprType::Nested>::type& | 
|  | nestedExpression() const { return m_xpr; } | 
|  |  | 
|  | /** \returns the nested expression */ | 
|  | typename ei_cleantype<typename XprType::Nested>::type& | 
|  | nestedExpression() { return m_xpr.const_cast_derived(); } | 
|  |  | 
|  | protected: | 
|  | const typename XprType::Nested m_xpr; | 
|  | const UnaryOp m_functor; | 
|  | }; | 
|  |  | 
|  | // This is the generic implementation for dense storage. | 
|  | // It can be used for any expression types implementing the dense concept. | 
|  | template<typename UnaryOp, typename XprType> | 
|  | class CwiseUnaryOpImpl<UnaryOp,XprType,Dense> | 
|  | : public ei_dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef CwiseUnaryOp<UnaryOp, XprType> Derived; | 
|  | typedef typename ei_dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base; | 
|  | EIGEN_DENSE_PUBLIC_INTERFACE(Derived) | 
|  |  | 
|  | EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const | 
|  | { | 
|  | return derived().functor()(derived().nestedExpression().coeff(row, col)); | 
|  | } | 
|  |  | 
|  | template<int LoadMode> | 
|  | EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const | 
|  | { | 
|  | return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(row, col)); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE const Scalar coeff(Index index) const | 
|  | { | 
|  | return derived().functor()(derived().nestedExpression().coeff(index)); | 
|  | } | 
|  |  | 
|  | template<int LoadMode> | 
|  | EIGEN_STRONG_INLINE PacketScalar packet(Index index) const | 
|  | { | 
|  | return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #endif // EIGEN_CWISE_UNARY_OP_H |