|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_MATRIXBASE_H | 
|  | #define EIGEN_MATRIXBASE_H | 
|  |  | 
|  | /** \class MatrixBase | 
|  | * | 
|  | * \brief Base class for all dense matrices, vectors, and expressions | 
|  | * | 
|  | * This class is the base that is inherited by all matrix, vector, and related expression | 
|  | * types. Most of the Eigen API is contained in this class, and its base classes. Other important | 
|  | * classes for the Eigen API are Matrix, and VectorwiseOp. | 
|  | * | 
|  | * Note that some methods are defined in other modules such as the \ref LU_Module LU module | 
|  | * for all functions related to matrix inversions. | 
|  | * | 
|  | * \param Derived is the derived type, e.g. a matrix type, or an expression, etc. | 
|  | * | 
|  | * When writing a function taking Eigen objects as argument, if you want your function | 
|  | * to take as argument any matrix, vector, or expression, just let it take a | 
|  | * MatrixBase argument. As an example, here is a function printFirstRow which, given | 
|  | * a matrix, vector, or expression \a x, prints the first row of \a x. | 
|  | * | 
|  | * \code | 
|  | template<typename Derived> | 
|  | void printFirstRow(const Eigen::MatrixBase<Derived>& x) | 
|  | { | 
|  | cout << x.row(0) << endl; | 
|  | } | 
|  | * \endcode | 
|  | */ | 
|  | template<typename Derived> class MatrixBase | 
|  | : public DenseBase<Derived> | 
|  | { | 
|  | public: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef MatrixBase StorageBaseType; | 
|  | typedef typename ei_traits<Derived>::StorageKind StorageKind; | 
|  | typedef typename ei_traits<Derived>::Index Index; | 
|  | typedef typename ei_traits<Derived>::Scalar Scalar; | 
|  | typedef typename ei_packet_traits<Scalar>::type PacketScalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | typedef DenseBase<Derived> Base; | 
|  | using Base::RowsAtCompileTime; | 
|  | using Base::ColsAtCompileTime; | 
|  | using Base::SizeAtCompileTime; | 
|  | using Base::MaxRowsAtCompileTime; | 
|  | using Base::MaxColsAtCompileTime; | 
|  | using Base::MaxSizeAtCompileTime; | 
|  | using Base::IsVectorAtCompileTime; | 
|  | using Base::Flags; | 
|  | using Base::CoeffReadCost; | 
|  |  | 
|  | using Base::derived; | 
|  | using Base::const_cast_derived; | 
|  | using Base::rows; | 
|  | using Base::cols; | 
|  | using Base::size; | 
|  | using Base::coeff; | 
|  | using Base::coeffRef; | 
|  | using Base::lazyAssign; | 
|  | using Base::eval; | 
|  | using Base::operator+=; | 
|  | using Base::operator-=; | 
|  | using Base::operator*=; | 
|  | using Base::operator/=; | 
|  |  | 
|  | typedef typename Base::CoeffReturnType CoeffReturnType; | 
|  | typedef typename Base::RowXpr RowXpr; | 
|  | typedef typename Base::ColXpr ColXpr; | 
|  | #endif // not EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  |  | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** type of the equivalent square matrix */ | 
|  | typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), | 
|  | EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType; | 
|  | #endif // not EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | /** \returns the size of the main diagonal, which is min(rows(),cols()). | 
|  | * \sa rows(), cols(), SizeAtCompileTime. */ | 
|  | inline Index diagonalSize() const { return std::min(rows(),cols()); } | 
|  |  | 
|  | /** \brief The plain matrix type corresponding to this expression. | 
|  | * | 
|  | * This is not necessarily exactly the return type of eval(). In the case of plain matrices, | 
|  | * the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed | 
|  | * that the return type of eval() is either PlainObject or const PlainObject&. | 
|  | */ | 
|  | typedef Matrix<typename ei_traits<Derived>::Scalar, | 
|  | ei_traits<Derived>::RowsAtCompileTime, | 
|  | ei_traits<Derived>::ColsAtCompileTime, | 
|  | AutoAlign | (ei_traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor), | 
|  | ei_traits<Derived>::MaxRowsAtCompileTime, | 
|  | ei_traits<Derived>::MaxColsAtCompileTime | 
|  | > PlainObject; | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \internal Represents a matrix with all coefficients equal to one another*/ | 
|  | typedef CwiseNullaryOp<ei_scalar_constant_op<Scalar>,Derived> ConstantReturnType; | 
|  | /** \internal the return type of MatrixBase::adjoint() */ | 
|  | typedef typename ei_meta_if<NumTraits<Scalar>::IsComplex, | 
|  | CwiseUnaryOp<ei_scalar_conjugate_op<Scalar>, Eigen::Transpose<Derived> >, | 
|  | Transpose<Derived> | 
|  | >::ret AdjointReturnType; | 
|  | /** \internal Return type of eigenvalues() */ | 
|  | typedef Matrix<std::complex<RealScalar>, ei_traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType; | 
|  | /** \internal the return type of identity */ | 
|  | typedef CwiseNullaryOp<ei_scalar_identity_op<Scalar>,Derived> IdentityReturnType; | 
|  | /** \internal the return type of unit vectors */ | 
|  | typedef Block<CwiseNullaryOp<ei_scalar_identity_op<Scalar>, SquareMatrixType>, | 
|  | ei_traits<Derived>::RowsAtCompileTime, | 
|  | ei_traits<Derived>::ColsAtCompileTime> BasisReturnType; | 
|  | #endif // not EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase | 
|  | #   include "../plugins/CommonCwiseUnaryOps.h" | 
|  | #   include "../plugins/CommonCwiseBinaryOps.h" | 
|  | #   include "../plugins/MatrixCwiseUnaryOps.h" | 
|  | #   include "../plugins/MatrixCwiseBinaryOps.h" | 
|  | #   ifdef EIGEN_MATRIXBASE_PLUGIN | 
|  | #     include EIGEN_MATRIXBASE_PLUGIN | 
|  | #   endif | 
|  | #undef EIGEN_CURRENT_STORAGE_BASE_CLASS | 
|  |  | 
|  | /** Special case of the template operator=, in order to prevent the compiler | 
|  | * from generating a default operator= (issue hit with g++ 4.1) | 
|  | */ | 
|  | Derived& operator=(const MatrixBase& other); | 
|  |  | 
|  | // We cannot inherit here via Base::operator= since it is causing | 
|  | // trouble with MSVC. | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | Derived& operator=(const DenseBase<OtherDerived>& other); | 
|  |  | 
|  | template <typename OtherDerived> | 
|  | Derived& operator=(const EigenBase<OtherDerived>& other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Derived& operator=(const ReturnByValue<OtherDerived>& other); | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename ProductDerived, typename Lhs, typename Rhs> | 
|  | Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other); | 
|  | #endif // not EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Derived& operator+=(const MatrixBase<OtherDerived>& other); | 
|  | template<typename OtherDerived> | 
|  | Derived& operator-=(const MatrixBase<OtherDerived>& other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | const typename ProductReturnType<Derived,OtherDerived>::Type | 
|  | operator*(const MatrixBase<OtherDerived> &other) const; | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | const typename ProductReturnType<Derived,OtherDerived,LazyCoeffBasedProductMode>::Type | 
|  | lazyProduct(const MatrixBase<OtherDerived> &other) const; | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Derived& operator*=(const EigenBase<OtherDerived>& other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | void applyOnTheLeft(const EigenBase<OtherDerived>& other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | void applyOnTheRight(const EigenBase<OtherDerived>& other); | 
|  |  | 
|  | template<typename DiagonalDerived> | 
|  | const DiagonalProduct<Derived, DiagonalDerived, OnTheRight> | 
|  | operator*(const DiagonalBase<DiagonalDerived> &diagonal) const; | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Scalar dot(const MatrixBase<OtherDerived>& other) const; | 
|  | RealScalar squaredNorm() const; | 
|  | RealScalar norm() const; | 
|  | RealScalar stableNorm() const; | 
|  | RealScalar blueNorm() const; | 
|  | RealScalar hypotNorm() const; | 
|  | const PlainObject normalized() const; | 
|  | void normalize(); | 
|  |  | 
|  | const AdjointReturnType adjoint() const; | 
|  | void adjointInPlace(); | 
|  |  | 
|  | Diagonal<Derived,0> diagonal(); | 
|  | const Diagonal<Derived,0> diagonal() const; | 
|  |  | 
|  | template<int Index> Diagonal<Derived,Index> diagonal(); | 
|  | template<int Index> const Diagonal<Derived,Index> diagonal() const; | 
|  |  | 
|  | Diagonal<Derived, Dynamic> diagonal(Index index); | 
|  | const Diagonal<Derived, Dynamic> diagonal(Index index) const; | 
|  |  | 
|  | template<unsigned int Mode> TriangularView<Derived, Mode> part(); | 
|  | template<unsigned int Mode> const TriangularView<Derived, Mode> part() const; | 
|  |  | 
|  | template<unsigned int Mode> TriangularView<Derived, Mode> triangularView(); | 
|  | template<unsigned int Mode> const TriangularView<Derived, Mode> triangularView() const; | 
|  |  | 
|  | template<unsigned int UpLo> SelfAdjointView<Derived, UpLo> selfadjointView(); | 
|  | template<unsigned int UpLo> const SelfAdjointView<Derived, UpLo> selfadjointView() const; | 
|  |  | 
|  | const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0), | 
|  | typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) const; | 
|  | static const IdentityReturnType Identity(); | 
|  | static const IdentityReturnType Identity(Index rows, Index cols); | 
|  | static const BasisReturnType Unit(Index size, Index i); | 
|  | static const BasisReturnType Unit(Index i); | 
|  | static const BasisReturnType UnitX(); | 
|  | static const BasisReturnType UnitY(); | 
|  | static const BasisReturnType UnitZ(); | 
|  | static const BasisReturnType UnitW(); | 
|  |  | 
|  | const DiagonalWrapper<Derived> asDiagonal() const; | 
|  |  | 
|  | Derived& setIdentity(); | 
|  | Derived& setIdentity(Index rows, Index cols); | 
|  |  | 
|  | bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; | 
|  | bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; | 
|  |  | 
|  | bool isUpperTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; | 
|  | bool isLowerTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | bool isOrthogonal(const MatrixBase<OtherDerived>& other, | 
|  | RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; | 
|  | bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const; | 
|  |  | 
|  | /** \returns true if each coefficients of \c *this and \a other are all exactly equal. | 
|  | * \warning When using floating point scalar values you probably should rather use a | 
|  | *          fuzzy comparison such as isApprox() | 
|  | * \sa isApprox(), operator!= */ | 
|  | template<typename OtherDerived> | 
|  | inline bool operator==(const MatrixBase<OtherDerived>& other) const | 
|  | { return cwiseEqual(other).all(); } | 
|  |  | 
|  | /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. | 
|  | * \warning When using floating point scalar values you probably should rather use a | 
|  | *          fuzzy comparison such as isApprox() | 
|  | * \sa isApprox(), operator== */ | 
|  | template<typename OtherDerived> | 
|  | inline bool operator!=(const MatrixBase<OtherDerived>& other) const | 
|  | { return cwiseNotEqual(other).any(); } | 
|  |  | 
|  | NoAlias<Derived,Eigen::MatrixBase > noalias(); | 
|  |  | 
|  | inline const ForceAlignedAccess<Derived> forceAlignedAccess() const; | 
|  | inline ForceAlignedAccess<Derived> forceAlignedAccess(); | 
|  | template<bool Enable> inline typename ei_makeconst<typename ei_meta_if<Enable,ForceAlignedAccess<Derived>,Derived&>::ret>::type forceAlignedAccessIf() const; | 
|  | template<bool Enable> inline typename ei_meta_if<Enable,ForceAlignedAccess<Derived>,Derived&>::ret forceAlignedAccessIf(); | 
|  |  | 
|  | Scalar trace() const; | 
|  |  | 
|  | /////////// Array module /////////// | 
|  |  | 
|  | template<int p> RealScalar lpNorm() const; | 
|  |  | 
|  | MatrixBase<Derived>& matrix() { return *this; } | 
|  | const MatrixBase<Derived>& matrix() const { return *this; } | 
|  |  | 
|  | ArrayWrapper<Derived> array() { return derived(); } | 
|  | const ArrayWrapper<Derived> array() const { return derived(); } | 
|  |  | 
|  | /////////// LU module /////////// | 
|  |  | 
|  | const FullPivLU<PlainObject> fullPivLu() const; | 
|  | const PartialPivLU<PlainObject> partialPivLu() const; | 
|  | const PartialPivLU<PlainObject> lu() const; | 
|  | const ei_inverse_impl<Derived> inverse() const; | 
|  | template<typename ResultType> | 
|  | void computeInverseAndDetWithCheck( | 
|  | ResultType& inverse, | 
|  | typename ResultType::Scalar& determinant, | 
|  | bool& invertible, | 
|  | const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() | 
|  | ) const; | 
|  | template<typename ResultType> | 
|  | void computeInverseWithCheck( | 
|  | ResultType& inverse, | 
|  | bool& invertible, | 
|  | const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() | 
|  | ) const; | 
|  | Scalar determinant() const; | 
|  |  | 
|  | /////////// Cholesky module /////////// | 
|  |  | 
|  | const LLT<PlainObject>  llt() const; | 
|  | const LDLT<PlainObject> ldlt() const; | 
|  |  | 
|  | /////////// QR module /////////// | 
|  |  | 
|  | const HouseholderQR<PlainObject> householderQr() const; | 
|  | const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const; | 
|  | const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const; | 
|  |  | 
|  | EigenvaluesReturnType eigenvalues() const; | 
|  | RealScalar operatorNorm() const; | 
|  |  | 
|  | /////////// SVD module /////////// | 
|  |  | 
|  | SVD<PlainObject> svd() const; | 
|  |  | 
|  | /////////// Geometry module /////////// | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | PlainObject cross(const MatrixBase<OtherDerived>& other) const; | 
|  | template<typename OtherDerived> | 
|  | PlainObject cross3(const MatrixBase<OtherDerived>& other) const; | 
|  | PlainObject unitOrthogonal(void) const; | 
|  | Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const; | 
|  | const ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const; | 
|  | enum { | 
|  | SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 | 
|  | }; | 
|  | typedef Block<Derived, | 
|  | ei_traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, | 
|  | ei_traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne; | 
|  | typedef CwiseUnaryOp<ei_scalar_quotient1_op<typename ei_traits<Derived>::Scalar>, | 
|  | StartMinusOne > HNormalizedReturnType; | 
|  |  | 
|  | const HNormalizedReturnType hnormalized() const; | 
|  | typedef Homogeneous<Derived,MatrixBase<Derived>::ColsAtCompileTime==1?Vertical:Horizontal> HomogeneousReturnType; | 
|  | const HomogeneousReturnType homogeneous() const; | 
|  |  | 
|  | ////////// Householder module /////////// | 
|  |  | 
|  | void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); | 
|  | template<typename EssentialPart> | 
|  | void makeHouseholder(EssentialPart& essential, | 
|  | Scalar& tau, RealScalar& beta) const; | 
|  | template<typename EssentialPart> | 
|  | void applyHouseholderOnTheLeft(const EssentialPart& essential, | 
|  | const Scalar& tau, | 
|  | Scalar* workspace); | 
|  | template<typename EssentialPart> | 
|  | void applyHouseholderOnTheRight(const EssentialPart& essential, | 
|  | const Scalar& tau, | 
|  | Scalar* workspace); | 
|  |  | 
|  | ///////// Jacobi module ///////// | 
|  |  | 
|  | template<typename OtherScalar> | 
|  | void applyOnTheLeft(Index p, Index q, const PlanarRotation<OtherScalar>& j); | 
|  | template<typename OtherScalar> | 
|  | void applyOnTheRight(Index p, Index q, const PlanarRotation<OtherScalar>& j); | 
|  |  | 
|  | ///////// MatrixFunctions module ///////// | 
|  |  | 
|  | typedef typename ei_stem_function<Scalar>::type StemFunction; | 
|  | const MatrixExponentialReturnValue<Derived> exp() const; | 
|  | const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const; | 
|  | const MatrixFunctionReturnValue<Derived> cosh() const; | 
|  | const MatrixFunctionReturnValue<Derived> sinh() const; | 
|  | const MatrixFunctionReturnValue<Derived> cos() const; | 
|  | const MatrixFunctionReturnValue<Derived> sin() const; | 
|  |  | 
|  | #ifdef EIGEN2_SUPPORT | 
|  | template<typename ProductDerived, typename Lhs, typename Rhs> | 
|  | Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0, | 
|  | EvalBeforeAssigningBit>& other); | 
|  |  | 
|  | template<typename ProductDerived, typename Lhs, typename Rhs> | 
|  | Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0, | 
|  | EvalBeforeAssigningBit>& other); | 
|  |  | 
|  | /** \deprecated because .lazy() is deprecated | 
|  | * Overloaded for cache friendly product evaluation */ | 
|  | template<typename OtherDerived> | 
|  | Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other) | 
|  | { return lazyAssign(other._expression()); } | 
|  |  | 
|  | template<unsigned int Added> | 
|  | const Flagged<Derived, Added, 0> marked() const; | 
|  | const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const; | 
|  |  | 
|  | inline const Cwise<Derived> cwise() const; | 
|  | inline Cwise<Derived> cwise(); | 
|  |  | 
|  | VectorBlock<Derived> start(Index size); | 
|  | const VectorBlock<Derived> start(Index size) const; | 
|  | VectorBlock<Derived> end(Index size); | 
|  | const VectorBlock<Derived> end(Index size) const; | 
|  | template<int Size> VectorBlock<Derived,Size> start(); | 
|  | template<int Size> const VectorBlock<Derived,Size> start() const; | 
|  | template<int Size> VectorBlock<Derived,Size> end(); | 
|  | template<int Size> const VectorBlock<Derived,Size> end() const; | 
|  |  | 
|  | Minor<Derived> minor(Index row, Index col); | 
|  | const Minor<Derived> minor(Index row, Index col) const; | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | MatrixBase() : Base() {} | 
|  |  | 
|  | private: | 
|  | explicit MatrixBase(int); | 
|  | MatrixBase(int,int); | 
|  | template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&); | 
|  | }; | 
|  |  | 
|  | #endif // EIGEN_MATRIXBASE_H |