|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_PERMUTATIONMATRIX_H | 
|  | #define EIGEN_PERMUTATIONMATRIX_H | 
|  |  | 
|  | /** \class PermutationMatrix | 
|  | * | 
|  | * \brief Permutation matrix | 
|  | * | 
|  | * \param SizeAtCompileTime the number of rows/cols, or Dynamic | 
|  | * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. | 
|  | * | 
|  | * This class represents a permutation matrix, internally stored as a vector of integers. | 
|  | * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix | 
|  | * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: | 
|  | *  \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] | 
|  | * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: | 
|  | *  \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] | 
|  | * | 
|  | * Permutation matrices are square and invertible. | 
|  | * | 
|  | * Notice that in addition to the member functions and operators listed here, there also are non-member | 
|  | * operator* to multiply a PermutationMatrix with any kind of matrix expression (MatrixBase) on either side. | 
|  | * | 
|  | * \sa class DiagonalMatrix | 
|  | */ | 
|  | template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> struct ei_permut_matrix_product_retval; | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | struct ei_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > | 
|  | : ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > | 
|  | {}; | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | class PermutationMatrix : public EigenBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > | 
|  | { | 
|  | public: | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef ei_traits<PermutationMatrix> Traits; | 
|  | typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> | 
|  | DenseMatrixType; | 
|  | enum { | 
|  | Flags = Traits::Flags, | 
|  | CoeffReadCost = Traits::CoeffReadCost, | 
|  | RowsAtCompileTime = Traits::RowsAtCompileTime, | 
|  | ColsAtCompileTime = Traits::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = Traits::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename Traits::Scalar Scalar; | 
|  | typedef typename Traits::Index Index; | 
|  | #endif | 
|  |  | 
|  | typedef Matrix<int, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; | 
|  |  | 
|  | inline PermutationMatrix() | 
|  | {} | 
|  |  | 
|  | /** Constructs an uninitialized permutation matrix of given size. | 
|  | */ | 
|  | inline PermutationMatrix(int size) : m_indices(size) | 
|  | {} | 
|  |  | 
|  | /** Copy constructor. */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | inline PermutationMatrix(const PermutationMatrix<OtherSize, OtherMaxSize>& other) | 
|  | : m_indices(other.indices()) {} | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** Standard copy constructor. Defined only to prevent a default copy constructor | 
|  | * from hiding the other templated constructor */ | 
|  | inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {} | 
|  | #endif | 
|  |  | 
|  | /** Generic constructor from expression of the indices. The indices | 
|  | * array has the meaning that the permutations sends each integer i to indices[i]. | 
|  | * | 
|  | * \warning It is your responsibility to check that the indices array that you passes actually | 
|  | * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the | 
|  | * array's size. | 
|  | */ | 
|  | template<typename Other> | 
|  | explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) | 
|  | {} | 
|  |  | 
|  | /** Convert the Transpositions \a tr to a permutation matrix */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | explicit PermutationMatrix(const Transpositions<OtherSize,OtherMaxSize>& tr) | 
|  | : m_indices(tr.size()) | 
|  | { | 
|  | *this = tr; | 
|  | } | 
|  |  | 
|  | /** Copies the other permutation into *this */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | PermutationMatrix& operator=(const PermutationMatrix<OtherSize, OtherMaxSize>& other) | 
|  | { | 
|  | m_indices = other.indices(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Assignment from the Transpositions \a tr */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | PermutationMatrix& operator=(const Transpositions<OtherSize,OtherMaxSize>& tr) | 
|  | { | 
|  | setIdentity(tr.size()); | 
|  | for(Index k=size()-1; k>=0; --k) | 
|  | applyTranspositionOnTheRight(k,tr.coeff(k)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | PermutationMatrix& operator=(const PermutationMatrix& other) | 
|  | { | 
|  | m_indices = other.m_indices; | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \returns the number of rows */ | 
|  | inline Index rows() const { return m_indices.size(); } | 
|  |  | 
|  | /** \returns the number of columns */ | 
|  | inline Index cols() const { return m_indices.size(); } | 
|  |  | 
|  | /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ | 
|  | inline Index size() const { return m_indices.size(); } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename DenseDerived> | 
|  | void evalTo(MatrixBase<DenseDerived>& other) const | 
|  | { | 
|  | other.setZero(); | 
|  | for (int i=0; i<rows();++i) | 
|  | other.coeffRef(m_indices.coeff(i),i) = typename DenseDerived::Scalar(1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \returns a Matrix object initialized from this permutation matrix. Notice that it | 
|  | * is inefficient to return this Matrix object by value. For efficiency, favor using | 
|  | * the Matrix constructor taking EigenBase objects. | 
|  | */ | 
|  | DenseMatrixType toDenseMatrix() const | 
|  | { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  | /** \returns a reference to the stored array representing the permutation. */ | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | /** Resizes to given size. | 
|  | */ | 
|  | inline void resize(Index size) | 
|  | { | 
|  | m_indices.resize(size); | 
|  | } | 
|  |  | 
|  | /** Sets *this to be the identity permutation matrix */ | 
|  | void setIdentity() | 
|  | { | 
|  | for(Index i = 0; i < m_indices.size(); ++i) | 
|  | m_indices.coeffRef(i) = i; | 
|  | } | 
|  |  | 
|  | /** Sets *this to be the identity permutation matrix of given size. | 
|  | */ | 
|  | void setIdentity(Index size) | 
|  | { | 
|  | resize(size); | 
|  | setIdentity(); | 
|  | } | 
|  |  | 
|  | /** Multiplies *this by the transposition \f$(ij)\f$ on the left. | 
|  | * | 
|  | * \returns a reference to *this. | 
|  | * | 
|  | * \warning This is much slower than applyTranspositionOnTheRight(int,int): | 
|  | * this has linear complexity and requires a lot of branching. | 
|  | * | 
|  | * \sa applyTranspositionOnTheRight(int,int) | 
|  | */ | 
|  | PermutationMatrix& applyTranspositionOnTheLeft(Index i, Index j) | 
|  | { | 
|  | ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size()); | 
|  | for(Index k = 0; k < m_indices.size(); ++k) | 
|  | { | 
|  | if(m_indices.coeff(k) == i) m_indices.coeffRef(k) = j; | 
|  | else if(m_indices.coeff(k) == j) m_indices.coeffRef(k) = i; | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Multiplies *this by the transposition \f$(ij)\f$ on the right. | 
|  | * | 
|  | * \returns a reference to *this. | 
|  | * | 
|  | * This is a fast operation, it only consists in swapping two indices. | 
|  | * | 
|  | * \sa applyTranspositionOnTheLeft(int,int) | 
|  | */ | 
|  | PermutationMatrix& applyTranspositionOnTheRight(Index i, Index j) | 
|  | { | 
|  | ei_assert(i>=0 && j>=0 && i<m_indices.size() && j<m_indices.size()); | 
|  | std::swap(m_indices.coeffRef(i), m_indices.coeffRef(j)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns the inverse permutation matrix. | 
|  | * | 
|  | * \note \note_try_to_help_rvo | 
|  | */ | 
|  | inline Transpose<PermutationMatrix> inverse() const | 
|  | { return *this; } | 
|  | /** \returns the tranpose permutation matrix. | 
|  | * | 
|  | * \note \note_try_to_help_rvo | 
|  | */ | 
|  | inline Transpose<PermutationMatrix> transpose() const | 
|  | { return *this; } | 
|  |  | 
|  | /**** multiplication helpers to hopefully get RVO ****/ | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | PermutationMatrix(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other) | 
|  | : m_indices(other.nestedPermutation().size()) | 
|  | { | 
|  | for (int i=0; i<rows();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i; | 
|  | } | 
|  | protected: | 
|  | enum Product_t {Product}; | 
|  | PermutationMatrix(Product_t, const PermutationMatrix& lhs, const PermutationMatrix& rhs) | 
|  | : m_indices(lhs.m_indices.size()) | 
|  | { | 
|  | ei_assert(lhs.cols() == rhs.rows()); | 
|  | for (int i=0; i<rows();++i) m_indices.coeffRef(i) = lhs.m_indices.coeff(rhs.m_indices.coeff(i)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** \returns the product permutation matrix. | 
|  | * | 
|  | * \note \note_try_to_help_rvo | 
|  | */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | inline PermutationMatrix operator*(const PermutationMatrix<OtherSize, OtherMaxSize>& other) const | 
|  | { return PermutationMatrix(Product, *this, other); } | 
|  |  | 
|  | /** \returns the product of a permutation with another inverse permutation. | 
|  | * | 
|  | * \note \note_try_to_help_rvo | 
|  | */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | inline PermutationMatrix operator*(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other) const | 
|  | { return PermutationMatrix(Product, *this, other.eval()); } | 
|  |  | 
|  | /** \returns the product of an inverse permutation with another permutation. | 
|  | * | 
|  | * \note \note_try_to_help_rvo | 
|  | */ | 
|  | template<int OtherSize, int OtherMaxSize> friend | 
|  | inline PermutationMatrix operator*(const Transpose<PermutationMatrix<OtherSize,OtherMaxSize> >& other, const PermutationMatrix& perm) | 
|  | { return PermutationMatrix(Product, other.eval(), perm); } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | IndicesType m_indices; | 
|  | }; | 
|  |  | 
|  | /** \returns the matrix with the permutation applied to the columns. | 
|  | */ | 
|  | template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | inline const ei_permut_matrix_product_retval<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight> | 
|  | operator*(const MatrixBase<Derived>& matrix, | 
|  | const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation) | 
|  | { | 
|  | return ei_permut_matrix_product_retval | 
|  | <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight> | 
|  | (permutation, matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix with the permutation applied to the rows. | 
|  | */ | 
|  | template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | inline const ei_permut_matrix_product_retval | 
|  | <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft> | 
|  | operator*(const PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> &permutation, | 
|  | const MatrixBase<Derived>& matrix) | 
|  | { | 
|  | return ei_permut_matrix_product_retval | 
|  | <PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft> | 
|  | (permutation, matrix.derived()); | 
|  | } | 
|  |  | 
|  | template<typename PermutationType, typename MatrixType, int Side, bool Transposed> | 
|  | struct ei_traits<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > | 
|  | { | 
|  | typedef typename MatrixType::PlainObject ReturnType; | 
|  | }; | 
|  |  | 
|  | template<typename PermutationType, typename MatrixType, int Side, bool Transposed> | 
|  | struct ei_permut_matrix_product_retval | 
|  | : public ReturnByValue<ei_permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > | 
|  | { | 
|  | typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; | 
|  |  | 
|  | ei_permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) | 
|  | : m_permutation(perm), m_matrix(matrix) | 
|  | {} | 
|  |  | 
|  | inline int rows() const { return m_matrix.rows(); } | 
|  | inline int cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | template<typename Dest> inline void evalTo(Dest& dst) const | 
|  | { | 
|  | const int n = Side==OnTheLeft ? rows() : cols(); | 
|  |  | 
|  | if(ei_is_same_type<MatrixTypeNestedCleaned,Dest>::ret && ei_extract_data(dst) == ei_extract_data(m_matrix)) | 
|  | { | 
|  | // apply the permutation inplace | 
|  | Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size()); | 
|  | mask.fill(false); | 
|  | int r = 0; | 
|  | while(r < m_permutation.size()) | 
|  | { | 
|  | // search for the next seed | 
|  | while(r<m_permutation.size() && mask[r]) r++; | 
|  | if(r>=m_permutation.size()) | 
|  | break; | 
|  | // we got one, let's follow it until we are back to the seed | 
|  | int k0 = r++; | 
|  | int kPrev = k0; | 
|  | mask.coeffRef(k0) = true; | 
|  | for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) | 
|  | { | 
|  | Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) | 
|  | .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> | 
|  | (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); | 
|  |  | 
|  | mask.coeffRef(k) = true; | 
|  | kPrev = k; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | for(int i = 0; i < n; ++i) | 
|  | { | 
|  | Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> | 
|  | (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) | 
|  |  | 
|  | = | 
|  |  | 
|  | Block<MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime> | 
|  | (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const PermutationType& m_permutation; | 
|  | const typename MatrixType::Nested m_matrix; | 
|  | }; | 
|  |  | 
|  | /* Template partial specialization for transposed/inverse permutations */ | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | struct ei_traits<Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > > | 
|  | : ei_traits<Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > | 
|  | {}; | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | class Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > | 
|  | : public EigenBase<Transpose<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> > > | 
|  | { | 
|  | typedef PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime> PermutationType; | 
|  | typedef typename PermutationType::IndicesType IndicesType; | 
|  | public: | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typedef ei_traits<PermutationType> Traits; | 
|  | typedef Matrix<int,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> | 
|  | DenseMatrixType; | 
|  | enum { | 
|  | Flags = Traits::Flags, | 
|  | CoeffReadCost = Traits::CoeffReadCost, | 
|  | RowsAtCompileTime = Traits::RowsAtCompileTime, | 
|  | ColsAtCompileTime = Traits::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = Traits::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename Traits::Scalar Scalar; | 
|  | #endif | 
|  |  | 
|  | Transpose(const PermutationType& p) : m_permutation(p) {} | 
|  |  | 
|  | inline int rows() const { return m_permutation.rows(); } | 
|  | inline int cols() const { return m_permutation.cols(); } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename DenseDerived> | 
|  | void evalTo(MatrixBase<DenseDerived>& other) const | 
|  | { | 
|  | other.setZero(); | 
|  | for (int i=0; i<rows();++i) | 
|  | other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \return the equivalent permutation matrix */ | 
|  | PermutationType eval() const { return *this; } | 
|  |  | 
|  | DenseMatrixType toDenseMatrix() const { return *this; } | 
|  |  | 
|  | /** \returns the matrix with the inverse permutation applied to the columns. | 
|  | */ | 
|  | template<typename Derived> friend | 
|  | inline const ei_permut_matrix_product_retval<PermutationType, Derived, OnTheRight, true> | 
|  | operator*(const MatrixBase<Derived>& matrix, const Transpose& trPerm) | 
|  | { | 
|  | return ei_permut_matrix_product_retval<PermutationType, Derived, OnTheRight, true>(trPerm.m_permutation, matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix with the inverse permutation applied to the rows. | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const ei_permut_matrix_product_retval<PermutationType, Derived, OnTheLeft, true> | 
|  | operator*(const MatrixBase<Derived>& matrix) const | 
|  | { | 
|  | return ei_permut_matrix_product_retval<PermutationType, Derived, OnTheLeft, true>(m_permutation, matrix.derived()); | 
|  | } | 
|  |  | 
|  | const PermutationType& nestedPermutation() const { return m_permutation; } | 
|  |  | 
|  | protected: | 
|  | const PermutationType& m_permutation; | 
|  | }; | 
|  |  | 
|  | #endif // EIGEN_PERMUTATIONMATRIX_H |