|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_REDUX_H | 
|  | #define EIGEN_REDUX_H | 
|  |  | 
|  | // TODO | 
|  | //  * implement other kind of vectorization | 
|  | //  * factorize code | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 1 : the logic deciding a strategy for vectorization and unrolling | 
|  | ***************************************************************************/ | 
|  |  | 
|  | template<typename Func, typename Derived> | 
|  | struct ei_redux_traits | 
|  | { | 
|  | public: | 
|  | enum { | 
|  | PacketSize = ei_packet_traits<typename Derived::Scalar>::size, | 
|  | InnerMaxSize = int(Derived::IsRowMajor) | 
|  | ? Derived::MaxColsAtCompileTime | 
|  | : Derived::MaxRowsAtCompileTime | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) | 
|  | && (ei_functor_traits<Func>::PacketAccess), | 
|  | MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), | 
|  | MaySliceVectorize  = MightVectorize && int(InnerMaxSize)>=3*PacketSize | 
|  | }; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) | 
|  | : int(MaySliceVectorize)  ? int(SliceVectorizedTraversal) | 
|  | : int(DefaultTraversal) | 
|  | }; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | Cost = (  Derived::SizeAtCompileTime == Dynamic | 
|  | || Derived::CoeffReadCost == Dynamic | 
|  | || (Derived::SizeAtCompileTime!=1 && ei_functor_traits<Func>::Cost == Dynamic) | 
|  | ) ? Dynamic | 
|  | : Derived::SizeAtCompileTime * Derived::CoeffReadCost | 
|  | + (Derived::SizeAtCompileTime-1) * ei_functor_traits<Func>::Cost, | 
|  | UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) | 
|  | }; | 
|  |  | 
|  | public: | 
|  | enum { | 
|  | Unrolling = Cost != Dynamic && Cost <= UnrollingLimit | 
|  | ? CompleteUnrolling | 
|  | : NoUnrolling | 
|  | }; | 
|  | }; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 2 : unrollers | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /*** no vectorization ***/ | 
|  |  | 
|  | template<typename Func, typename Derived, int Start, int Length> | 
|  | struct ei_redux_novec_unroller | 
|  | { | 
|  | enum { | 
|  | HalfLength = Length/2 | 
|  | }; | 
|  |  | 
|  | typedef typename Derived::Scalar Scalar; | 
|  |  | 
|  | EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func) | 
|  | { | 
|  | return func(ei_redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), | 
|  | ei_redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Derived, int Start> | 
|  | struct ei_redux_novec_unroller<Func, Derived, Start, 1> | 
|  | { | 
|  | enum { | 
|  | outer = Start / Derived::InnerSizeAtCompileTime, | 
|  | inner = Start % Derived::InnerSizeAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef typename Derived::Scalar Scalar; | 
|  |  | 
|  | EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&) | 
|  | { | 
|  | return mat.coeffByOuterInner(outer, inner); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // This is actually dead code and will never be called. It is required | 
|  | // to prevent false warnings regarding failed inlining though | 
|  | // for 0 length run() will never be called at all. | 
|  | template<typename Func, typename Derived, int Start> | 
|  | struct ei_redux_novec_unroller<Func, Derived, Start, 0> | 
|  | { | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | EIGEN_STRONG_INLINE static Scalar run(const Derived&, const Func&) { return Scalar(); } | 
|  | }; | 
|  |  | 
|  | /*** vectorization ***/ | 
|  |  | 
|  | template<typename Func, typename Derived, int Start, int Length> | 
|  | struct ei_redux_vec_unroller | 
|  | { | 
|  | enum { | 
|  | PacketSize = ei_packet_traits<typename Derived::Scalar>::size, | 
|  | HalfLength = Length/2 | 
|  | }; | 
|  |  | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename ei_packet_traits<Scalar>::type PacketScalar; | 
|  |  | 
|  | EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func) | 
|  | { | 
|  | return func.packetOp( | 
|  | ei_redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), | 
|  | ei_redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) ); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Derived, int Start> | 
|  | struct ei_redux_vec_unroller<Func, Derived, Start, 1> | 
|  | { | 
|  | enum { | 
|  | index = Start * ei_packet_traits<typename Derived::Scalar>::size, | 
|  | outer = index / int(Derived::InnerSizeAtCompileTime), | 
|  | inner = index % int(Derived::InnerSizeAtCompileTime), | 
|  | alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned | 
|  | }; | 
|  |  | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename ei_packet_traits<Scalar>::type PacketScalar; | 
|  |  | 
|  | EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&) | 
|  | { | 
|  | return mat.template packetByOuterInner<alignment>(outer, inner); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Part 3 : implementation of all cases | 
|  | ***************************************************************************/ | 
|  |  | 
|  | template<typename Func, typename Derived, | 
|  | int Traversal = ei_redux_traits<Func, Derived>::Traversal, | 
|  | int Unrolling = ei_redux_traits<Func, Derived>::Unrolling | 
|  | > | 
|  | struct ei_redux_impl; | 
|  |  | 
|  | template<typename Func, typename Derived> | 
|  | struct ei_redux_impl<Func, Derived, DefaultTraversal, NoUnrolling> | 
|  | { | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename Derived::Index Index; | 
|  | static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func) | 
|  | { | 
|  | ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix"); | 
|  | Scalar res; | 
|  | res = mat.coeffByOuterInner(0, 0); | 
|  | for(Index i = 1; i < mat.innerSize(); ++i) | 
|  | res = func(res, mat.coeffByOuterInner(0, i)); | 
|  | for(Index i = 1; i < mat.outerSize(); ++i) | 
|  | for(Index j = 0; j < mat.innerSize(); ++j) | 
|  | res = func(res, mat.coeffByOuterInner(i, j)); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Derived> | 
|  | struct ei_redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling> | 
|  | : public ei_redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime> | 
|  | {}; | 
|  |  | 
|  | template<typename Func, typename Derived> | 
|  | struct ei_redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling> | 
|  | { | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename ei_packet_traits<Scalar>::type PacketScalar; | 
|  | typedef typename Derived::Index Index; | 
|  |  | 
|  | static Scalar run(const Derived& mat, const Func& func) | 
|  | { | 
|  | const Index size = mat.size(); | 
|  | const Index packetSize = ei_packet_traits<Scalar>::size; | 
|  | const Index alignedStart = ei_first_aligned(mat); | 
|  | enum { | 
|  | alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit) | 
|  | ? Aligned : Unaligned | 
|  | }; | 
|  | const Index alignedSize = ((size-alignedStart)/packetSize)*packetSize; | 
|  | const Index alignedEnd = alignedStart + alignedSize; | 
|  | Scalar res; | 
|  | if(alignedSize) | 
|  | { | 
|  | PacketScalar packet_res = mat.template packet<alignment>(alignedStart); | 
|  | for(Index index = alignedStart + packetSize; index < alignedEnd; index += packetSize) | 
|  | packet_res = func.packetOp(packet_res, mat.template packet<alignment>(index)); | 
|  | res = func.predux(packet_res); | 
|  |  | 
|  | for(Index index = 0; index < alignedStart; ++index) | 
|  | res = func(res,mat.coeff(index)); | 
|  |  | 
|  | for(Index index = alignedEnd; index < size; ++index) | 
|  | res = func(res,mat.coeff(index)); | 
|  | } | 
|  | else // too small to vectorize anything. | 
|  | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. | 
|  | { | 
|  | res = mat.coeff(0); | 
|  | for(Index index = 1; index < size; ++index) | 
|  | res = func(res,mat.coeff(index)); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Derived> | 
|  | struct ei_redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling> | 
|  | { | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename ei_packet_traits<Scalar>::type PacketScalar; | 
|  | typedef typename Derived::Index Index; | 
|  |  | 
|  | static Scalar run(const Derived& mat, const Func& func) | 
|  | { | 
|  | const Index innerSize = mat.innerSize(); | 
|  | const Index outerSize = mat.outerSize(); | 
|  | enum { | 
|  | packetSize = ei_packet_traits<Scalar>::size | 
|  | }; | 
|  | const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; | 
|  | Scalar res; | 
|  | if(packetedInnerSize) | 
|  | { | 
|  | PacketScalar packet_res = mat.template packet<Unaligned>(0,0); | 
|  | for(Index j=0; j<outerSize; ++j) | 
|  | for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) | 
|  | packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned>(j,i)); | 
|  |  | 
|  | res = func.predux(packet_res); | 
|  | for(Index j=0; j<outerSize; ++j) | 
|  | for(Index i=packetedInnerSize; i<innerSize; ++i) | 
|  | res = func(res, mat.coeffByOuterInner(j,i)); | 
|  | } | 
|  | else // too small to vectorize anything. | 
|  | // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. | 
|  | { | 
|  | res = ei_redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Func, typename Derived> | 
|  | struct ei_redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling> | 
|  | { | 
|  | typedef typename Derived::Scalar Scalar; | 
|  | typedef typename ei_packet_traits<Scalar>::type PacketScalar; | 
|  | enum { | 
|  | PacketSize = ei_packet_traits<Scalar>::size, | 
|  | Size = Derived::SizeAtCompileTime, | 
|  | VectorizedSize = (Size / PacketSize) * PacketSize | 
|  | }; | 
|  | EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func) | 
|  | { | 
|  | Scalar res = func.predux(ei_redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); | 
|  | if (VectorizedSize != Size) | 
|  | res = func(res,ei_redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** \returns the result of a full redux operation on the whole matrix or vector using \a func | 
|  | * | 
|  | * The template parameter \a BinaryOp is the type of the functor \a func which must be | 
|  | * an associative operator. Both current STL and TR1 functor styles are handled. | 
|  | * | 
|  | * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() | 
|  | */ | 
|  | template<typename Derived> | 
|  | template<typename Func> | 
|  | EIGEN_STRONG_INLINE typename ei_result_of<Func(typename ei_traits<Derived>::Scalar)>::type | 
|  | DenseBase<Derived>::redux(const Func& func) const | 
|  | { | 
|  | typedef typename ei_cleantype<typename Derived::Nested>::type ThisNested; | 
|  | return ei_redux_impl<Func, ThisNested> | 
|  | ::run(derived(), func); | 
|  | } | 
|  |  | 
|  | /** \returns the minimum of all coefficients of *this | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar | 
|  | DenseBase<Derived>::minCoeff() const | 
|  | { | 
|  | return this->redux(Eigen::ei_scalar_min_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the maximum of all coefficients of *this | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar | 
|  | DenseBase<Derived>::maxCoeff() const | 
|  | { | 
|  | return this->redux(Eigen::ei_scalar_max_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the sum of all coefficients of *this | 
|  | * | 
|  | * \sa trace(), prod(), mean() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar | 
|  | DenseBase<Derived>::sum() const | 
|  | { | 
|  | return this->redux(Eigen::ei_scalar_sum_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the mean of all coefficients of *this | 
|  | * | 
|  | * \sa trace(), prod(), sum() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar | 
|  | DenseBase<Derived>::mean() const | 
|  | { | 
|  | return Scalar(this->redux(Eigen::ei_scalar_sum_op<Scalar>())) / Scalar(this->size()); | 
|  | } | 
|  |  | 
|  | /** \returns the product of all coefficients of *this | 
|  | * | 
|  | * Example: \include MatrixBase_prod.cpp | 
|  | * Output: \verbinclude MatrixBase_prod.out | 
|  | * | 
|  | * \sa sum(), mean(), trace() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar | 
|  | DenseBase<Derived>::prod() const | 
|  | { | 
|  | return this->redux(Eigen::ei_scalar_product_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. | 
|  | * | 
|  | * \c *this can be any matrix, not necessarily square. | 
|  | * | 
|  | * \sa diagonal(), sum() | 
|  | */ | 
|  | template<typename Derived> | 
|  | EIGEN_STRONG_INLINE typename ei_traits<Derived>::Scalar | 
|  | MatrixBase<Derived>::trace() const | 
|  | { | 
|  | return derived().diagonal().sum(); | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_REDUX_H |