|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_TRANSPOSITIONS_H | 
|  | #define EIGEN_TRANSPOSITIONS_H | 
|  |  | 
|  | /** \class Transpositions | 
|  | * | 
|  | * \brief Represents a sequence of transpositions (row/column interchange) | 
|  | * | 
|  | * \param SizeAtCompileTime the number of transpositions, or Dynamic | 
|  | * \param MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. | 
|  | * | 
|  | * This class represents a permutation transformation as a sequence of \em n transpositions | 
|  | * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. | 
|  | * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges | 
|  | * the rows \c i and \c indices[i] of the matrix \c M. | 
|  | * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. | 
|  | * | 
|  | * Compared to the class PermutationMatrix, such a sequence of transpositions is what is | 
|  | * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. | 
|  | * | 
|  | * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: | 
|  | * \code | 
|  | * Transpositions tr; | 
|  | * MatrixXf mat; | 
|  | * mat = tr * mat; | 
|  | * \endcode | 
|  | * In this example, we detect that the matrix appears on both side, and so the transpositions | 
|  | * are applied in-place without any temporary or extra copy. | 
|  | * | 
|  | * \sa class PermutationMatrix | 
|  | */ | 
|  | template<typename TranspositionType, typename MatrixType, int Side, bool Transposed=false> struct ei_transposition_matrix_product_retval; | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | class Transpositions | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef Matrix<DenseIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; | 
|  | typedef typename IndicesType::Index Index; | 
|  |  | 
|  | inline Transpositions() {} | 
|  |  | 
|  | /** Copy constructor. */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | inline Transpositions(const Transpositions<OtherSize, OtherMaxSize>& other) | 
|  | : m_indices(other.indices()) {} | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** Standard copy constructor. Defined only to prevent a default copy constructor | 
|  | * from hiding the other templated constructor */ | 
|  | inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {} | 
|  | #endif | 
|  |  | 
|  | /** Generic constructor from expression of the transposition indices. */ | 
|  | template<typename Other> | 
|  | explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices) | 
|  | {} | 
|  |  | 
|  | /** Copies the \a other transpositions into \c *this */ | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | Transpositions& operator=(const Transpositions<OtherSize, OtherMaxSize>& other) | 
|  | { | 
|  | m_indices = other.indices(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | Transpositions& operator=(const Transpositions& other) | 
|  | { | 
|  | m_indices = other.m_indices; | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** Constructs an uninitialized permutation matrix of given size. | 
|  | */ | 
|  | inline Transpositions(Index size) : m_indices(size) | 
|  | {} | 
|  |  | 
|  | /** \returns the number of transpositions */ | 
|  | inline Index size() const { return m_indices.size(); } | 
|  |  | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline const Index& coeff(Index i) const { return m_indices.coeff(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline Index& coeffRef(Index i) { return m_indices.coeffRef(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline const Index& operator()(Index i) const { return m_indices(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline Index& operator()(Index i) { return m_indices(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline const Index& operator[](Index i) const { return m_indices(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline Index& operator[](Index i) { return m_indices(i); } | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  | /** \returns a reference to the stored array representing the transpositions. */ | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | /** Resizes to given size. */ | 
|  | inline void resize(int size) | 
|  | { | 
|  | m_indices.resize(size); | 
|  | } | 
|  |  | 
|  | /** Sets \c *this to represents an identity transformation */ | 
|  | void setIdentity() | 
|  | { | 
|  | for(int i = 0; i < m_indices.size(); ++i) | 
|  | m_indices.coeffRef(i) = i; | 
|  | } | 
|  |  | 
|  | // FIXME: do we want such methods ? | 
|  | // might be usefull when the target matrix expression is complex, e.g.: | 
|  | // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); | 
|  | /* | 
|  | template<typename MatrixType> | 
|  | void applyForwardToRows(MatrixType& mat) const | 
|  | { | 
|  | for(Index k=0 ; k<size() ; ++k) | 
|  | if(m_indices(k)!=k) | 
|  | mat.row(k).swap(mat.row(m_indices(k))); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void applyBackwardToRows(MatrixType& mat) const | 
|  | { | 
|  | for(Index k=size()-1 ; k>=0 ; --k) | 
|  | if(m_indices(k)!=k) | 
|  | mat.row(k).swap(mat.row(m_indices(k))); | 
|  | } | 
|  | */ | 
|  |  | 
|  | /** \returns the inverse transformation */ | 
|  | inline Transpose<Transpositions> inverse() const | 
|  | { return *this; } | 
|  |  | 
|  | /** \returns the tranpose transformation */ | 
|  | inline Transpose<Transpositions> transpose() const | 
|  | { return *this; } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<int OtherSize, int OtherMaxSize> | 
|  | Transpositions(const Transpose<Transpositions<OtherSize,OtherMaxSize> >& other) | 
|  | : m_indices(other.size()) | 
|  | { | 
|  | Index n = size(); | 
|  | Index j = size-1; | 
|  | for(Index i=0; i<n;++i,--j) | 
|  | m_indices.coeffRef(j) = other.nestedTranspositions().indices().coeff(i); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  |  | 
|  | IndicesType m_indices; | 
|  | }; | 
|  |  | 
|  | /** \returns the \a matrix with the \a transpositions applied to the columns. | 
|  | */ | 
|  | template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | inline const ei_transposition_matrix_product_retval<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight> | 
|  | operator*(const MatrixBase<Derived>& matrix, | 
|  | const Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> &transpositions) | 
|  | { | 
|  | return ei_transposition_matrix_product_retval | 
|  | <Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheRight> | 
|  | (transpositions, matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the \a matrix with the \a transpositions applied to the rows. | 
|  | */ | 
|  | template<typename Derived, int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | inline const ei_transposition_matrix_product_retval | 
|  | <Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft> | 
|  | operator*(const Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> &transpositions, | 
|  | const MatrixBase<Derived>& matrix) | 
|  | { | 
|  | return ei_transposition_matrix_product_retval | 
|  | <Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime>, Derived, OnTheLeft> | 
|  | (transpositions, matrix.derived()); | 
|  | } | 
|  |  | 
|  | template<typename TranspositionType, typename MatrixType, int Side, bool Transposed> | 
|  | struct ei_traits<ei_transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> > | 
|  | { | 
|  | typedef typename MatrixType::PlainObject ReturnType; | 
|  | }; | 
|  |  | 
|  | template<typename TranspositionType, typename MatrixType, int Side, bool Transposed> | 
|  | struct ei_transposition_matrix_product_retval | 
|  | : public ReturnByValue<ei_transposition_matrix_product_retval<TranspositionType, MatrixType, Side, Transposed> > | 
|  | { | 
|  | typedef typename ei_cleantype<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; | 
|  | typedef typename TranspositionType::Index Index; | 
|  |  | 
|  | ei_transposition_matrix_product_retval(const TranspositionType& tr, const MatrixType& matrix) | 
|  | : m_transpositions(tr), m_matrix(matrix) | 
|  | {} | 
|  |  | 
|  | inline int rows() const { return m_matrix.rows(); } | 
|  | inline int cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | template<typename Dest> inline void evalTo(Dest& dst) const | 
|  | { | 
|  | const int size = m_transpositions.size(); | 
|  | Index j = 0; | 
|  |  | 
|  | if(!(ei_is_same_type<MatrixTypeNestedCleaned,Dest>::ret && ei_extract_data(dst) == ei_extract_data(m_matrix))) | 
|  | dst = m_matrix; | 
|  |  | 
|  | for(int k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k) | 
|  | if((j=m_transpositions.coeff(k))!=k) | 
|  | { | 
|  | if(Side==OnTheLeft) | 
|  | dst.row(k).swap(dst.row(j)); | 
|  | else if(Side==OnTheRight) | 
|  | dst.col(k).swap(dst.col(j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const TranspositionType& m_transpositions; | 
|  | const typename MatrixType::Nested m_matrix; | 
|  | }; | 
|  |  | 
|  | /* Template partial specialization for transposed/inverse transpositions */ | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime> | 
|  | class Transpose<Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> > | 
|  | { | 
|  | typedef Transpositions<SizeAtCompileTime, MaxSizeAtCompileTime> TranspositionType; | 
|  | typedef typename TranspositionType::IndicesType IndicesType; | 
|  | public: | 
|  |  | 
|  | Transpose(const TranspositionType& t) : m_transpositions(t) {} | 
|  |  | 
|  | inline int size() const { return m_transpositions.size(); } | 
|  |  | 
|  | /** \returns the \a matrix with the inverse transpositions applied to the columns. | 
|  | */ | 
|  | template<typename Derived> friend | 
|  | inline const ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true> | 
|  | operator*(const MatrixBase<Derived>& matrix, const Transpose& trt) | 
|  | { | 
|  | return ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheRight, true>(trt.m_transpositions, matrix.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the \a matrix with the inverse transpositions applied to the rows. | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true> | 
|  | operator*(const MatrixBase<Derived>& matrix) const | 
|  | { | 
|  | return ei_transposition_matrix_product_retval<TranspositionType, Derived, OnTheLeft, true>(m_transpositions, matrix.derived()); | 
|  | } | 
|  |  | 
|  | const TranspositionType& nestedTranspositions() const { return m_transpositions; } | 
|  |  | 
|  | protected: | 
|  | const TranspositionType& m_transpositions; | 
|  | }; | 
|  |  | 
|  | #endif // EIGEN_TRANSPOSITIONS_H |