| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_ORTHOMETHODS_H | 
 | #define EIGEN_ORTHOMETHODS_H | 
 |  | 
 | /** \geometry_module | 
 |   * | 
 |   * \returns the cross product of \c *this and \a other | 
 |   * | 
 |   * Here is a very good explanation of cross-product: http://xkcd.com/199/ | 
 |   * \sa MatrixBase::cross3() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename OtherDerived> | 
 | inline typename MatrixBase<Derived>::PlainObject | 
 | MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) | 
 |  | 
 |   // Note that there is no need for an expression here since the compiler | 
 |   // optimize such a small temporary very well (even within a complex expression) | 
 |   const typename ei_nested<Derived,2>::type lhs(derived()); | 
 |   const typename ei_nested<OtherDerived,2>::type rhs(other.derived()); | 
 |   return typename ei_plain_matrix_type<Derived>::type( | 
 |     lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1), | 
 |     lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2), | 
 |     lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0) | 
 |   ); | 
 | } | 
 |  | 
 | template< int Arch,typename VectorLhs,typename VectorRhs, | 
 |           typename Scalar = typename VectorLhs::Scalar, | 
 |           int Vectorizable = (VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit> | 
 | struct ei_cross3_impl { | 
 |   inline static typename ei_plain_matrix_type<VectorLhs>::type | 
 |   run(const VectorLhs& lhs, const VectorRhs& rhs) | 
 |   { | 
 |     return typename ei_plain_matrix_type<VectorLhs>::type( | 
 |       lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1), | 
 |       lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2), | 
 |       lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0), | 
 |       0 | 
 |     ); | 
 |   } | 
 | }; | 
 |  | 
 | /** \geometry_module | 
 |   * | 
 |   * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients | 
 |   * | 
 |   * The size of \c *this and \a other must be four. This function is especially useful | 
 |   * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. | 
 |   * | 
 |   * \sa MatrixBase::cross() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename OtherDerived> | 
 | inline typename MatrixBase<Derived>::PlainObject | 
 | MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) | 
 |  | 
 |   typedef typename ei_nested<Derived,2>::type DerivedNested; | 
 |   typedef typename ei_nested<OtherDerived,2>::type OtherDerivedNested; | 
 |   const DerivedNested lhs(derived()); | 
 |   const OtherDerivedNested rhs(other.derived()); | 
 |  | 
 |   return ei_cross3_impl<Architecture::Target, | 
 |                         typename ei_cleantype<DerivedNested>::type, | 
 |                         typename ei_cleantype<OtherDerivedNested>::type>::run(lhs,rhs); | 
 | } | 
 |  | 
 | /** \returns a matrix expression of the cross product of each column or row | 
 |   * of the referenced expression with the \a other vector. | 
 |   * | 
 |   * The referenced matrix must have one dimension equal to 3. | 
 |   * The result matrix has the same dimensions than the referenced one. | 
 |   * | 
 |   * \geometry_module | 
 |   * | 
 |   * \sa MatrixBase::cross() */ | 
 | template<typename ExpressionType, int Direction> | 
 | template<typename OtherDerived> | 
 | const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType | 
 | VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) | 
 |   EIGEN_STATIC_ASSERT((ei_is_same_type<Scalar, typename OtherDerived::Scalar>::ret), | 
 |     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |  | 
 |   CrossReturnType res(_expression().rows(),_expression().cols()); | 
 |   if(Direction==Vertical) | 
 |   { | 
 |     ei_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); | 
 |     res.row(0) = _expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1); | 
 |     res.row(1) = _expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2); | 
 |     res.row(2) = _expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0); | 
 |   } | 
 |   else | 
 |   { | 
 |     ei_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); | 
 |     res.col(0) = _expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1); | 
 |     res.col(1) = _expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2); | 
 |     res.col(2) = _expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0); | 
 |   } | 
 |   return res; | 
 | } | 
 |  | 
 | template<typename Derived, int Size = Derived::SizeAtCompileTime> | 
 | struct ei_unitOrthogonal_selector | 
 | { | 
 |   typedef typename ei_plain_matrix_type<Derived>::type VectorType; | 
 |   typedef typename ei_traits<Derived>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef typename Derived::Index Index; | 
 |   typedef Matrix<Scalar,2,1> Vector2; | 
 |   inline static VectorType run(const Derived& src) | 
 |   { | 
 |     VectorType perp = VectorType::Zero(src.size()); | 
 |     Index maxi = 0; | 
 |     Index sndi = 0; | 
 |     src.cwiseAbs().maxCoeff(&maxi); | 
 |     if (maxi==0) | 
 |       sndi = 1; | 
 |     RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); | 
 |     perp.coeffRef(maxi) = -ei_conj(src.coeff(sndi)) * invnm; | 
 |     perp.coeffRef(sndi) =  ei_conj(src.coeff(maxi)) * invnm; | 
 |  | 
 |     return perp; | 
 |    } | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | struct ei_unitOrthogonal_selector<Derived,3> | 
 | { | 
 |   typedef typename ei_plain_matrix_type<Derived>::type VectorType; | 
 |   typedef typename ei_traits<Derived>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   inline static VectorType run(const Derived& src) | 
 |   { | 
 |     VectorType perp; | 
 |     /* Let us compute the crossed product of *this with a vector | 
 |      * that is not too close to being colinear to *this. | 
 |      */ | 
 |  | 
 |     /* unless the x and y coords are both close to zero, we can | 
 |      * simply take ( -y, x, 0 ) and normalize it. | 
 |      */ | 
 |     if((!ei_isMuchSmallerThan(src.x(), src.z())) | 
 |     || (!ei_isMuchSmallerThan(src.y(), src.z()))) | 
 |     { | 
 |       RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); | 
 |       perp.coeffRef(0) = -ei_conj(src.y())*invnm; | 
 |       perp.coeffRef(1) = ei_conj(src.x())*invnm; | 
 |       perp.coeffRef(2) = 0; | 
 |     } | 
 |     /* if both x and y are close to zero, then the vector is close | 
 |      * to the z-axis, so it's far from colinear to the x-axis for instance. | 
 |      * So we take the crossed product with (1,0,0) and normalize it. | 
 |      */ | 
 |     else | 
 |     { | 
 |       RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); | 
 |       perp.coeffRef(0) = 0; | 
 |       perp.coeffRef(1) = -ei_conj(src.z())*invnm; | 
 |       perp.coeffRef(2) = ei_conj(src.y())*invnm; | 
 |     } | 
 |  | 
 |     return perp; | 
 |    } | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | struct ei_unitOrthogonal_selector<Derived,2> | 
 | { | 
 |   typedef typename ei_plain_matrix_type<Derived>::type VectorType; | 
 |   inline static VectorType run(const Derived& src) | 
 |   { return VectorType(-ei_conj(src.y()), ei_conj(src.x())).normalized(); } | 
 | }; | 
 |  | 
 | /** \returns a unit vector which is orthogonal to \c *this | 
 |   * | 
 |   * The size of \c *this must be at least 2. If the size is exactly 2, | 
 |   * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). | 
 |   * | 
 |   * \sa cross() | 
 |   */ | 
 | template<typename Derived> | 
 | typename MatrixBase<Derived>::PlainObject | 
 | MatrixBase<Derived>::unitOrthogonal() const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) | 
 |   return ei_unitOrthogonal_selector<Derived>::run(derived()); | 
 | } | 
 |  | 
 | #endif // EIGEN_ORTHOMETHODS_H |