| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #ifndef EIGEN_ROTATION2D_H | 
 | #define EIGEN_ROTATION2D_H | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \class Rotation2D | 
 |   * | 
 |   * \brief Represents a rotation/orientation in a 2 dimensional space. | 
 |   * | 
 |   * \param _Scalar the scalar type, i.e., the type of the coefficients | 
 |   * | 
 |   * This class is equivalent to a single scalar representing a counter clock wise rotation | 
 |   * as a single angle in radian. It provides some additional features such as the automatic | 
 |   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar | 
 |   * interface to Quaternion in order to facilitate the writing of generic algorithms | 
 |   * dealing with rotations. | 
 |   * | 
 |   * \sa class Quaternion, class Transform | 
 |   */ | 
 | template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> > | 
 | { | 
 |   typedef _Scalar Scalar; | 
 | }; | 
 |  | 
 | template<typename _Scalar> | 
 | class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> | 
 | { | 
 |   typedef RotationBase<Rotation2D<_Scalar>,2> Base; | 
 |  | 
 | public: | 
 |  | 
 |   using Base::operator*; | 
 |  | 
 |   enum { Dim = 2 }; | 
 |   /** the scalar type of the coefficients */ | 
 |   typedef _Scalar Scalar; | 
 |   typedef Matrix<Scalar,2,1> Vector2; | 
 |   typedef Matrix<Scalar,2,2> Matrix2; | 
 |  | 
 | protected: | 
 |  | 
 |   Scalar m_angle; | 
 |  | 
 | public: | 
 |  | 
 |   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ | 
 |   inline Rotation2D(Scalar a) : m_angle(a) {} | 
 |  | 
 |   /** \returns the rotation angle */ | 
 |   inline Scalar angle() const { return m_angle; } | 
 |  | 
 |   /** \returns a read-write reference to the rotation angle */ | 
 |   inline Scalar& angle() { return m_angle; } | 
 |  | 
 |   /** \returns the inverse rotation */ | 
 |   inline Rotation2D inverse() const { return -m_angle; } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   inline Rotation2D operator*(const Rotation2D& other) const | 
 |   { return m_angle + other.m_angle; } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   inline Rotation2D& operator*=(const Rotation2D& other) | 
 |   { return m_angle += other.m_angle; return *this; } | 
 |  | 
 |   /** Applies the rotation to a 2D vector */ | 
 |   Vector2 operator* (const Vector2& vec) const | 
 |   { return toRotationMatrix() * vec; } | 
 |  | 
 |   template<typename Derived> | 
 |   Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); | 
 |   Matrix2 toRotationMatrix(void) const; | 
 |  | 
 |   /** \returns the spherical interpolation between \c *this and \a other using | 
 |     * parameter \a t. It is in fact equivalent to a linear interpolation. | 
 |     */ | 
 |   inline Rotation2D slerp(Scalar t, const Rotation2D& other) const | 
 |   { return m_angle * (1-t) + other.angle() * t; } | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |     * | 
 |     * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |     * then this function smartly returns a const reference to \c *this. | 
 |     */ | 
 |   template<typename NewScalarType> | 
 |   inline typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const | 
 |   { return typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } | 
 |  | 
 |   /** Copy constructor with scalar type conversion */ | 
 |   template<typename OtherScalarType> | 
 |   inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) | 
 |   { | 
 |     m_angle = Scalar(other.angle()); | 
 |   } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |     * determined by \a prec. | 
 |     * | 
 |     * \sa MatrixBase::isApprox() */ | 
 |   bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const | 
 |   { return ei_isApprox(m_angle,other.m_angle, prec); } | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |   * single precision 2D rotation type */ | 
 | typedef Rotation2D<float> Rotation2Df; | 
 | /** \ingroup Geometry_Module | 
 |   * double precision 2D rotation type */ | 
 | typedef Rotation2D<double> Rotation2Dd; | 
 |  | 
 | /** Set \c *this from a 2x2 rotation matrix \a mat. | 
 |   * In other words, this function extract the rotation angle | 
 |   * from the rotation matrix. | 
 |   */ | 
 | template<typename Scalar> | 
 | template<typename Derived> | 
 | Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) | 
 | { | 
 |   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) | 
 |   m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0)); | 
 |   return *this; | 
 | } | 
 |  | 
 | /** Constructs and \returns an equivalent 2x2 rotation matrix. | 
 |   */ | 
 | template<typename Scalar> | 
 | typename Rotation2D<Scalar>::Matrix2 | 
 | Rotation2D<Scalar>::toRotationMatrix(void) const | 
 | { | 
 |   Scalar sinA = ei_sin(m_angle); | 
 |   Scalar cosA = ei_cos(m_angle); | 
 |   return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); | 
 | } | 
 |  | 
 | #endif // EIGEN_ROTATION2D_H |