|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Vincent Lejeune | 
|  | // Copyright (C) 2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_BLOCK_HOUSEHOLDER_H | 
|  | #define EIGEN_BLOCK_HOUSEHOLDER_H | 
|  |  | 
|  | // This file contains some helper function to deal with block householder reflectors | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename TriangularFactorType,typename VectorsType,typename CoeffsType> | 
|  | void ei_make_block_householder_triangular_factor(TriangularFactorType& triFactor, const VectorsType& vectors, const CoeffsType& hCoeffs) | 
|  | { | 
|  | typedef typename TriangularFactorType::Index Index; | 
|  | typedef typename VectorsType::Scalar Scalar; | 
|  | const Index nbVecs = vectors.cols(); | 
|  | ei_assert(triFactor.rows() == nbVecs && triFactor.cols() == nbVecs && vectors.rows()>=nbVecs); | 
|  |  | 
|  | for(Index i = 0; i < nbVecs; i++) | 
|  | { | 
|  | Index rs = vectors.rows() - i; | 
|  | Scalar Vii = vectors(i,i); | 
|  | vectors.const_cast_derived().coeffRef(i,i) = Scalar(1); | 
|  | triFactor.col(i).head(i).noalias() = vectors.block(i, 0, rs, i).adjoint() | 
|  | * vectors.col(i).tail(rs); | 
|  | triFactor.col(i).head(i) *= -hCoeffs(i); | 
|  | vectors.const_cast_derived().coeffRef(i, i) = Vii; | 
|  | // FIXME add .noalias() once the triangular product can work inplace | 
|  | triFactor.col(i).head(i) = triFactor.block(0,0,i,i).template triangularView<Upper>() | 
|  | * triFactor.col(i).head(i); | 
|  | triFactor(i,i) = hCoeffs(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename MatrixType,typename VectorsType,typename CoeffsType> | 
|  | void ei_apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vectors, const CoeffsType& hCoeffs) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | enum { TFactorSize = MatrixType::ColsAtCompileTime }; | 
|  | Index nbVecs = vectors.cols(); | 
|  | Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize> T(nbVecs,nbVecs); | 
|  | ei_make_block_householder_triangular_factor(T, vectors, hCoeffs); | 
|  |  | 
|  | const TriangularView<VectorsType, UnitLower>& V(vectors); | 
|  |  | 
|  | // A -= V T V^* A | 
|  | Matrix<typename MatrixType::Scalar,VectorsType::ColsAtCompileTime,MatrixType::ColsAtCompileTime,0, | 
|  | VectorsType::MaxColsAtCompileTime,MatrixType::MaxColsAtCompileTime> tmp = V.adjoint() * mat; | 
|  | // FIXME add .noalias() once the triangular product can work inplace | 
|  | tmp = T.template triangularView<Upper>().adjoint() * tmp; | 
|  | mat.noalias() -= V * tmp; | 
|  | } | 
|  |  | 
|  |  | 
|  | #endif // EIGEN_BLOCK_HOUSEHOLDER_H |