|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_PARTIALLU_H | 
|  | #define EIGEN_PARTIALLU_H | 
|  |  | 
|  | /** \ingroup LU_Module | 
|  | * | 
|  | * \class PartialPivLU | 
|  | * | 
|  | * \brief LU decomposition of a matrix with partial pivoting, and related features | 
|  | * | 
|  | * \param MatrixType the type of the matrix of which we are computing the LU decomposition | 
|  | * | 
|  | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A | 
|  | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P | 
|  | * is a permutation matrix. | 
|  | * | 
|  | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible | 
|  | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class | 
|  | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the | 
|  | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. | 
|  | * | 
|  | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided | 
|  | * by class FullPivLU. | 
|  | * | 
|  | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, | 
|  | * such as rank computation. If you need these features, use class FullPivLU. | 
|  | * | 
|  | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses | 
|  | * in the general case. | 
|  | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. | 
|  | * | 
|  | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). | 
|  | * | 
|  | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU | 
|  | */ | 
|  | template<typename _MatrixType> class PartialPivLU | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef typename ei_traits<MatrixType>::StorageKind StorageKind; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
|  | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via PartialPivLU::compute(const MatrixType&). | 
|  | */ | 
|  | PartialPivLU(); | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa PartialPivLU() | 
|  | */ | 
|  | PartialPivLU(Index size); | 
|  |  | 
|  | /** Constructor. | 
|  | * | 
|  | * \param matrix the matrix of which to compute the LU decomposition. | 
|  | * | 
|  | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). | 
|  | * If you need to deal with non-full rank, use class FullPivLU instead. | 
|  | */ | 
|  | PartialPivLU(const MatrixType& matrix); | 
|  |  | 
|  | PartialPivLU& compute(const MatrixType& matrix); | 
|  |  | 
|  | /** \returns the LU decomposition matrix: the upper-triangular part is U, the | 
|  | * unit-lower-triangular part is L (at least for square matrices; in the non-square | 
|  | * case, special care is needed, see the documentation of class FullPivLU). | 
|  | * | 
|  | * \sa matrixL(), matrixU() | 
|  | */ | 
|  | inline const MatrixType& matrixLU() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|  | return m_lu; | 
|  | } | 
|  |  | 
|  | /** \returns the permutation matrix P. | 
|  | */ | 
|  | inline const PermutationType& permutationP() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which | 
|  | * *this is the LU decomposition. | 
|  | * | 
|  | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, | 
|  | *          the only requirement in order for the equation to make sense is that | 
|  | *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. | 
|  | * | 
|  | * \returns the solution. | 
|  | * | 
|  | * Example: \include PartialPivLU_solve.cpp | 
|  | * Output: \verbinclude PartialPivLU_solve.out | 
|  | * | 
|  | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution | 
|  | * theoretically exists and is unique regardless of b. | 
|  | * | 
|  | * \sa TriangularView::solve(), inverse(), computeInverse() | 
|  | */ | 
|  | template<typename Rhs> | 
|  | inline const ei_solve_retval<PartialPivLU, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | ei_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|  | return ei_solve_retval<PartialPivLU, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the inverse of the matrix of which *this is the LU decomposition. | 
|  | * | 
|  | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for | 
|  | *          invertibility, use class FullPivLU instead. | 
|  | * | 
|  | * \sa MatrixBase::inverse(), LU::inverse() | 
|  | */ | 
|  | inline const ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|  | return ei_solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> | 
|  | (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); | 
|  | } | 
|  |  | 
|  | /** \returns the determinant of the matrix of which | 
|  | * *this is the LU decomposition. It has only linear complexity | 
|  | * (that is, O(n) where n is the dimension of the square matrix) | 
|  | * as the LU decomposition has already been computed. | 
|  | * | 
|  | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers | 
|  | *       optimized paths. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * | 
|  | * \sa MatrixBase::determinant() | 
|  | */ | 
|  | typename ei_traits<MatrixType>::Scalar determinant() const; | 
|  |  | 
|  | MatrixType reconstructedMatrix() const; | 
|  |  | 
|  | inline Index rows() const { return m_lu.rows(); } | 
|  | inline Index cols() const { return m_lu.cols(); } | 
|  |  | 
|  | protected: | 
|  | MatrixType m_lu; | 
|  | PermutationType m_p; | 
|  | TranspositionType m_rowsTranspositions; | 
|  | Index m_det_p; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | PartialPivLU<MatrixType>::PartialPivLU() | 
|  | : m_lu(), | 
|  | m_p(), | 
|  | m_rowsTranspositions(), | 
|  | m_det_p(0), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | PartialPivLU<MatrixType>::PartialPivLU(Index size) | 
|  | : m_lu(size, size), | 
|  | m_p(size), | 
|  | m_rowsTranspositions(size), | 
|  | m_det_p(0), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) | 
|  | : m_lu(matrix.rows(), matrix.rows()), | 
|  | m_p(matrix.rows()), | 
|  | m_rowsTranspositions(matrix.rows()), | 
|  | m_det_p(0), | 
|  | m_isInitialized(false) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | /** \internal This is the blocked version of ei_fullpivlu_unblocked() */ | 
|  | template<typename Scalar, int StorageOrder> | 
|  | struct ei_partial_lu_impl | 
|  | { | 
|  | // FIXME add a stride to Map, so that the following mapping becomes easier, | 
|  | // another option would be to create an expression being able to automatically | 
|  | // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly | 
|  | // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, | 
|  | // and Block. | 
|  | typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; | 
|  | typedef Block<MapLU, Dynamic, Dynamic> MatrixType; | 
|  | typedef Block<MatrixType,Dynamic,Dynamic> BlockType; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  |  | 
|  | /** \internal performs the LU decomposition in-place of the matrix \a lu | 
|  | * using an unblocked algorithm. | 
|  | * | 
|  | * In addition, this function returns the row transpositions in the | 
|  | * vector \a row_transpositions which must have a size equal to the number | 
|  | * of columns of the matrix \a lu, and an integer \a nb_transpositions | 
|  | * which returns the actual number of transpositions. | 
|  | * | 
|  | * \returns false if some pivot is exactly zero, in which case the matrix is left with | 
|  | *          undefined coefficients (to avoid generating inf/nan values). Returns true | 
|  | *          otherwise. | 
|  | */ | 
|  | static bool unblocked_lu(MatrixType& lu, Index* row_transpositions, Index& nb_transpositions) | 
|  | { | 
|  | const Index rows = lu.rows(); | 
|  | const Index size = std::min(lu.rows(),lu.cols()); | 
|  | nb_transpositions = 0; | 
|  | for(Index k = 0; k < size; ++k) | 
|  | { | 
|  | Index row_of_biggest_in_col; | 
|  | RealScalar biggest_in_corner | 
|  | = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); | 
|  | row_of_biggest_in_col += k; | 
|  |  | 
|  | if(biggest_in_corner == 0) // the pivot is exactly zero: the matrix is singular | 
|  | { | 
|  | // end quickly, avoid generating inf/nan values. Although in this unblocked_lu case | 
|  | // the result is still valid, there's no need to boast about it because | 
|  | // the blocked_lu code can't guarantee the same. | 
|  | // before exiting, make sure to initialize the still uninitialized row_transpositions | 
|  | // in a sane state without destroying what we already have. | 
|  | for(Index i = k; i < size; i++) | 
|  | row_transpositions[i] = i; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | row_transpositions[k] = row_of_biggest_in_col; | 
|  |  | 
|  | if(k != row_of_biggest_in_col) | 
|  | { | 
|  | lu.row(k).swap(lu.row(row_of_biggest_in_col)); | 
|  | ++nb_transpositions; | 
|  | } | 
|  |  | 
|  | if(k<rows-1) | 
|  | { | 
|  | Index rrows = rows-k-1; | 
|  | Index rsize = size-k-1; | 
|  | lu.col(k).tail(rrows) /= lu.coeff(k,k); | 
|  | lu.bottomRightCorner(rrows,rsize).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rsize); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** \internal performs the LU decomposition in-place of the matrix represented | 
|  | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a | 
|  | * recursive, blocked algorithm. | 
|  | * | 
|  | * In addition, this function returns the row transpositions in the | 
|  | * vector \a row_transpositions which must have a size equal to the number | 
|  | * of columns of the matrix \a lu, and an integer \a nb_transpositions | 
|  | * which returns the actual number of transpositions. | 
|  | * | 
|  | * \returns false if some pivot is exactly zero, in which case the matrix is left with | 
|  | *          undefined coefficients (to avoid generating inf/nan values). Returns true | 
|  | *          otherwise. | 
|  | * | 
|  | * \note This very low level interface using pointers, etc. is to: | 
|  | *   1 - reduce the number of instanciations to the strict minimum | 
|  | *   2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > | 
|  | */ | 
|  | static bool blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, Index* row_transpositions, Index& nb_transpositions, Index maxBlockSize=256) | 
|  | { | 
|  | MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); | 
|  | MatrixType lu(lu1,0,0,rows,cols); | 
|  |  | 
|  | const Index size = std::min(rows,cols); | 
|  |  | 
|  | // if the matrix is too small, no blocking: | 
|  | if(size<=16) | 
|  | { | 
|  | return unblocked_lu(lu, row_transpositions, nb_transpositions); | 
|  | } | 
|  |  | 
|  | // automatically adjust the number of subdivisions to the size | 
|  | // of the matrix so that there is enough sub blocks: | 
|  | Index blockSize; | 
|  | { | 
|  | blockSize = size/8; | 
|  | blockSize = (blockSize/16)*16; | 
|  | blockSize = std::min(std::max(blockSize,Index(8)), maxBlockSize); | 
|  | } | 
|  |  | 
|  | nb_transpositions = 0; | 
|  | for(Index k = 0; k < size; k+=blockSize) | 
|  | { | 
|  | Index bs = std::min(size-k,blockSize); // actual size of the block | 
|  | Index trows = rows - k - bs; // trailing rows | 
|  | Index tsize = size - k - bs; // trailing size | 
|  |  | 
|  | // partition the matrix: | 
|  | //                          A00 | A01 | A02 | 
|  | // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12 | 
|  | //                          A20 | A21 | A22 | 
|  | BlockType A_0(lu,0,0,rows,k); | 
|  | BlockType A_2(lu,0,k+bs,rows,tsize); | 
|  | BlockType A11(lu,k,k,bs,bs); | 
|  | BlockType A12(lu,k,k+bs,bs,tsize); | 
|  | BlockType A21(lu,k+bs,k,trows,bs); | 
|  | BlockType A22(lu,k+bs,k+bs,trows,tsize); | 
|  |  | 
|  | Index nb_transpositions_in_panel; | 
|  | // recursively call the blocked LU algorithm on [A11^T A21^T]^T | 
|  | // with a very small blocking size: | 
|  | if(!blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, | 
|  | row_transpositions+k, nb_transpositions_in_panel, 16)) | 
|  | { | 
|  | // end quickly with undefined coefficients, just avoid generating inf/nan values. | 
|  | // before exiting, make sure to initialize the still uninitialized row_transpositions | 
|  | // in a sane state without destroying what we already have. | 
|  | for(Index i=k; i<size; ++i) | 
|  | row_transpositions[i] = i; | 
|  | return false; | 
|  | } | 
|  | nb_transpositions += nb_transpositions_in_panel; | 
|  |  | 
|  | // update permutations and apply them to A_0 | 
|  | for(Index i=k; i<k+bs; ++i) | 
|  | { | 
|  | Index piv = (row_transpositions[i] += k); | 
|  | A_0.row(i).swap(A_0.row(piv)); | 
|  | } | 
|  |  | 
|  | if(trows) | 
|  | { | 
|  | // apply permutations to A_2 | 
|  | for(Index i=k;i<k+bs; ++i) | 
|  | A_2.row(i).swap(A_2.row(row_transpositions[i])); | 
|  |  | 
|  | // A12 = A11^-1 A12 | 
|  | A11.template triangularView<UnitLower>().solveInPlace(A12); | 
|  |  | 
|  | A22.noalias() -= A21 * A12; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal performs the LU decomposition with partial pivoting in-place. | 
|  | */ | 
|  | template<typename MatrixType, typename TranspositionType> | 
|  | void ei_partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename MatrixType::Index& nb_transpositions) | 
|  | { | 
|  | ei_assert(lu.cols() == row_transpositions.size()); | 
|  | ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); | 
|  |  | 
|  | ei_partial_lu_impl | 
|  | <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> | 
|  | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) | 
|  | { | 
|  | m_lu = matrix; | 
|  |  | 
|  | ei_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); | 
|  | const Index size = matrix.rows(); | 
|  |  | 
|  | m_rowsTranspositions.resize(size); | 
|  |  | 
|  | Index nb_transpositions; | 
|  | ei_partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); | 
|  | m_det_p = (nb_transpositions%2) ? -1 : 1; | 
|  |  | 
|  | m_p = m_rowsTranspositions; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename ei_traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|  | return Scalar(m_det_p) * m_lu.diagonal().prod(); | 
|  | } | 
|  |  | 
|  | /** \returns the matrix represented by the decomposition, | 
|  | * i.e., it returns the product: P^{-1} L U. | 
|  | * This function is provided for debug purpose. */ | 
|  | template<typename MatrixType> | 
|  | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const | 
|  | { | 
|  | ei_assert(m_isInitialized && "LU is not initialized."); | 
|  | // LU | 
|  | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() | 
|  | * m_lu.template triangularView<Upper>(); | 
|  |  | 
|  | // P^{-1}(LU) | 
|  | res = m_p.inverse() * res; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /***** Implementation of solve() *****************************************************/ | 
|  |  | 
|  | template<typename _MatrixType, typename Rhs> | 
|  | struct ei_solve_retval<PartialPivLU<_MatrixType>, Rhs> | 
|  | : ei_solve_retval_base<PartialPivLU<_MatrixType>, Rhs> | 
|  | { | 
|  | EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) | 
|  |  | 
|  | template<typename Dest> void evalTo(Dest& dst) const | 
|  | { | 
|  | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. | 
|  | * So we proceed as follows: | 
|  | * Step 1: compute c = Pb. | 
|  | * Step 2: replace c by the solution x to Lx = c. | 
|  | * Step 3: replace c by the solution x to Ux = c. | 
|  | */ | 
|  |  | 
|  | ei_assert(rhs().rows() == dec().matrixLU().rows()); | 
|  |  | 
|  | // Step 1 | 
|  | dst = dec().permutationP() * rhs(); | 
|  |  | 
|  | // Step 2 | 
|  | dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); | 
|  |  | 
|  | // Step 3 | 
|  | dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /******** MatrixBase methods *******/ | 
|  |  | 
|  | /** \lu_module | 
|  | * | 
|  | * \return the partial-pivoting LU decomposition of \c *this. | 
|  | * | 
|  | * \sa class PartialPivLU | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::partialPivLu() const | 
|  | { | 
|  | return PartialPivLU<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  | /** \lu_module | 
|  | * | 
|  | * Synonym of partialPivLu(). | 
|  | * | 
|  | * \return the partial-pivoting LU decomposition of \c *this. | 
|  | * | 
|  | * \sa class PartialPivLU | 
|  | */ | 
|  | template<typename Derived> | 
|  | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::lu() const | 
|  | { | 
|  | return PartialPivLU<PlainObject>(eval()); | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_PARTIALLU_H |