|  | 
 | //g++-4.4 -DNOMTL  -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid  -DOSKI -I ~/Coding/LinearAlgebra/mtl4/  spmv.cpp  -I .. -O2 -DNDEBUG -lrt  -lm -l oski_mat_CSC_Tid  -loskilt && ./a.out r200000 c200000 n100 t1 p1 | 
 |  | 
 | #define SCALAR double | 
 |  | 
 | #include <iostream> | 
 | #include <algorithm> | 
 | #include "BenchTimer.h" | 
 | #include "BenchSparseUtil.h" | 
 |  | 
 | #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE); | 
 |  | 
 | // #ifdef MKL | 
 | // | 
 | // #include "mkl_types.h" | 
 | // #include "mkl_spblas.h" | 
 | // | 
 | // template<typename Lhs,typename Rhs,typename Res> | 
 | // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res) | 
 | // { | 
 | //   char n = 'N'; | 
 | //   float alpha = 1; | 
 | //   char matdescra[6]; | 
 | //   matdescra[0] = 'G'; | 
 | //   matdescra[1] = 0; | 
 | //   matdescra[2] = 0; | 
 | //   matdescra[3] = 'C'; | 
 | //   mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, | 
 | //              lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(), | 
 | //              pntre, b, &ldb, &beta, c, &ldc); | 
 | // //   mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, | 
 | // //                 lhs._valuePtr(), lhs.rows(), DST, dst_stride); | 
 | // } | 
 | // | 
 | // #endif | 
 |  | 
 | int main(int argc, char *argv[]) | 
 | { | 
 |   int size = 10000; | 
 |   int rows = size; | 
 |   int cols = size; | 
 |   int nnzPerCol = 40; | 
 |   int tries = 2; | 
 |   int repeats = 2; | 
 |  | 
 |   bool need_help = false; | 
 |   for(int i = 1; i < argc; i++) | 
 |   { | 
 |     if(argv[i][0] == 'r') | 
 |     { | 
 |       rows = atoi(argv[i]+1); | 
 |     } | 
 |     else if(argv[i][0] == 'c') | 
 |     { | 
 |       cols = atoi(argv[i]+1); | 
 |     } | 
 |     else if(argv[i][0] == 'n') | 
 |     { | 
 |       nnzPerCol = atoi(argv[i]+1); | 
 |     } | 
 |     else if(argv[i][0] == 't') | 
 |     { | 
 |       tries = atoi(argv[i]+1); | 
 |     } | 
 |     else if(argv[i][0] == 'p') | 
 |     { | 
 |       repeats = atoi(argv[i]+1); | 
 |     } | 
 |     else | 
 |     { | 
 |       need_help = true; | 
 |     } | 
 |   } | 
 |   if(need_help) | 
 |   { | 
 |     std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n"; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n"; | 
 |  | 
 |   EigenSparseMatrix sm(rows,cols); | 
 |   DenseVector dv(cols), res(rows); | 
 |   dv.setRandom(); | 
 |  | 
 |   BenchTimer t; | 
 |   while (nnzPerCol>=4) | 
 |   { | 
 |     std::cout << "nnz: " << nnzPerCol << "\n"; | 
 |     sm.setZero(); | 
 |     fillMatrix2(nnzPerCol, rows, cols, sm); | 
 |  | 
 |     // dense matrices | 
 |     #ifdef DENSEMATRIX | 
 |     { | 
 |       DenseMatrix dm(rows,cols), (rows,cols); | 
 |       eiToDense(sm, dm); | 
 |  | 
 |       SPMV_BENCH(res = dm * sm); | 
 |       std::cout << "Dense       " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCHres = dm.transpose() * sm); | 
 |       std::cout << t.value()/repeats << endl; | 
 |     } | 
 |     #endif | 
 |  | 
 |     // eigen sparse matrices | 
 |     { | 
 |       SPMV_BENCH(res.noalias() += sm * dv; ) | 
 |       std::cout << "Eigen       " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCH(res.noalias() += sm.transpose() * dv; ) | 
 |       std::cout << t.value()/repeats << endl; | 
 |     } | 
 |  | 
 |     // CSparse | 
 |     #ifdef CSPARSE | 
 |     { | 
 |       std::cout << "CSparse \n"; | 
 |       cs *csm; | 
 |       eiToCSparse(sm, csm); | 
 |  | 
 | //       BENCH(); | 
 | //       timer.stop(); | 
 | //       std::cout << "   a * b:\t" << timer.value() << endl; | 
 |  | 
 | //       BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } ); | 
 | //       std::cout << "   a * b:\t" << timer.value() << endl; | 
 |     } | 
 |     #endif | 
 |  | 
 |     #ifdef OSKI | 
 |     { | 
 |       oski_matrix_t om; | 
 |       oski_vecview_t ov, ores; | 
 |       oski_Init(); | 
 |       om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols, | 
 |                              SHARE_INPUTMAT, 1, INDEX_ZERO_BASED); | 
 |       ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT); | 
 |       ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT); | 
 |  | 
 |       SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); | 
 |       std::cout << "OSKI        " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); | 
 |       std::cout << t.value()/repeats << "\n"; | 
 |  | 
 |       // tune | 
 |       t.reset(); | 
 |       t.start(); | 
 |       oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY); | 
 |       oski_TuneMat(om); | 
 |       t.stop(); | 
 |       double tuning = t.value(); | 
 |  | 
 |       SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); | 
 |       std::cout << "OSKI tuned  " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); | 
 |       std::cout << t.value()/repeats << "\t(" << tuning <<  ")\n"; | 
 |  | 
 |  | 
 |       oski_DestroyMat(om); | 
 |       oski_DestroyVecView(ov); | 
 |       oski_DestroyVecView(ores); | 
 |       oski_Close(); | 
 |     } | 
 |     #endif | 
 |  | 
 |     #ifndef NOUBLAS | 
 |     { | 
 |       using namespace boost::numeric; | 
 |       UblasMatrix um(rows,cols); | 
 |       eiToUblas(sm, um); | 
 |  | 
 |       boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows); | 
 |       Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv; | 
 |       Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res; | 
 |  | 
 |       SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true)); | 
 |       std::cout << "ublas       " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true)); | 
 |       std::cout << t.value()/repeats << endl; | 
 |     } | 
 |     #endif | 
 |  | 
 |     // GMM++ | 
 |     #ifndef NOGMM | 
 |     { | 
 |       GmmSparse gm(rows,cols); | 
 |       eiToGmm(sm, gm); | 
 |  | 
 |       std::vector<Scalar> gv(cols), gres(rows); | 
 |       Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv; | 
 |       Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res; | 
 |  | 
 |       SPMV_BENCH(gmm::mult(gm, gv, gres)); | 
 |       std::cout << "GMM++       " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres)); | 
 |       std::cout << t.value()/repeats << endl; | 
 |     } | 
 |     #endif | 
 |  | 
 |     // MTL4 | 
 |     #ifndef NOMTL | 
 |     { | 
 |       MtlSparse mm(rows,cols); | 
 |       eiToMtl(sm, mm); | 
 |       mtl::dense_vector<Scalar> mv(cols, 1.0); | 
 |       mtl::dense_vector<Scalar> mres(rows, 1.0); | 
 |  | 
 |       SPMV_BENCH(mres = mm * mv); | 
 |       std::cout << "MTL4        " << t.value()/repeats << "\t"; | 
 |  | 
 |       SPMV_BENCH(mres = trans(mm) * mv); | 
 |       std::cout << t.value()/repeats << endl; | 
 |     } | 
 |     #endif | 
 |  | 
 |     std::cout << "\n"; | 
 |  | 
 |     if(nnzPerCol==1) | 
 |       break; | 
 |     nnzPerCol -= nnzPerCol/2; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 |  |