|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "common.h" | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) | 
|  | { | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | 
|  | Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | 
|  |  | 
|  | if(beta!=Scalar(1)) | 
|  | vector(c, *m, *incc) *= beta; | 
|  |  | 
|  | if(OP(*opa)==NOTR) | 
|  | if(*incc==1) | 
|  | vector(c,*m)        += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb); | 
|  | else | 
|  | vector(c,*m,*incc)  += alpha * matrix(a,*m,*n,*lda) * vector(b,*n,*incb); | 
|  | else if(OP(*opa)==TR) | 
|  | if(*incb==1) | 
|  | vector(c,*m,*incc)  += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n); | 
|  | else | 
|  | vector(c,*m,*incc)  += alpha * matrix(a,*n,*m,*lda).transpose() * vector(b,*n,*incb); | 
|  | else if(OP(*opa)==TR) | 
|  | if(*incb==1) | 
|  | vector(c,*m,*incc)  += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n); | 
|  | else | 
|  | vector(c,*m,*incc)  += alpha * matrix(a,*n,*m,*lda).adjoint() * vector(b,*n,*incb); | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) | 
|  | { | 
|  | return 0; | 
|  |  | 
|  | typedef void (*functype)(int, const Scalar *, int, Scalar *, int); | 
|  | functype func[16]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<16; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | //     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0,          false,ColMajor,ColMajor>::run); | 
|  | //     func[TR    | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0,          false,RowMajor,ColMajor>::run); | 
|  | //     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|0,          Conj, RowMajor,ColMajor>::run); | 
|  | // | 
|  | //     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0,          false,ColMajor,ColMajor>::run); | 
|  | //     func[TR    | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0,          false,RowMajor,ColMajor>::run); | 
|  | //     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|0,          Conj, RowMajor,ColMajor>::run); | 
|  | // | 
|  | //     func[NOTR  | (UP << 3) | (UNIT  << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run); | 
|  | //     func[TR    | (UP << 2) | (UNIT  << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run); | 
|  | //     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (ei_triangular_solve_vector<Scalar, UpperTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run); | 
|  | // | 
|  | //     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run); | 
|  | //     func[TR    | (LO << 2) | (UNIT  << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run); | 
|  | //     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (ei_triangular_solve_vector<Scalar, LowerTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  |  | 
|  | int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | 
|  | if(code>=16 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *lda, b, *incb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) | 
|  | { | 
|  | return 0; | 
|  | // TODO | 
|  |  | 
|  | typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int); | 
|  | functype func[16]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<16; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | //     func[NOTR  | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[TR    | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[ADJ   | (UP << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  | // | 
|  | //     func[NOTR  | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[TR    | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[ADJ   | (LO << 2) | (NUNIT << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  | // | 
|  | //     func[NOTR  | (UP << 2) | (UNIT  << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[TR    | (UP << 2) | (UNIT  << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[ADJ   | (UP << 2) | (UNIT  << 3)] = (ei_product_triangular_matrix_vector<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  | // | 
|  | //     func[NOTR  | (LO << 2) | (UNIT  << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[TR    | (LO << 2) | (UNIT  << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run); | 
|  | //     func[ADJ   | (LO << 2) | (UNIT  << 3)] = (ei_product_triangular_matrix_vector<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  |  | 
|  | int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); | 
|  | if(code>=16 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *lda, b, *incb, b, *incb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // y = alpha*A*x + beta*y | 
|  | int EIGEN_BLAS_FUNC(ssymv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) | 
|  | { | 
|  | return 0; | 
|  |  | 
|  | // TODO | 
|  | } | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pc, int *ldc) | 
|  | { | 
|  | return 0; | 
|  |  | 
|  | // TODO | 
|  | typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar); | 
|  | functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | //     func[UP] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); | 
|  | //     func[LO] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *inca, c, *ldc, alpha); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *inca, RealScalar *pb, int *incb, RealScalar *pc, int *ldc) | 
|  | { | 
|  | return 0; | 
|  |  | 
|  | // TODO | 
|  | typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); | 
|  | functype func[2]; | 
|  |  | 
|  | static bool init = false; | 
|  | if(!init) | 
|  | { | 
|  | for(int k=0; k<2; ++k) | 
|  | func[k] = 0; | 
|  |  | 
|  | //     func[UP] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run); | 
|  | //     func[LO] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run); | 
|  |  | 
|  | init = true; | 
|  | } | 
|  |  | 
|  | Scalar* a = reinterpret_cast<Scalar*>(pa); | 
|  | Scalar* b = reinterpret_cast<Scalar*>(pb); | 
|  | Scalar* c = reinterpret_cast<Scalar*>(pc); | 
|  | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
|  |  | 
|  | int code = UPLO(*uplo); | 
|  | if(code>=2 || func[code]==0) | 
|  | return 0; | 
|  |  | 
|  | func[code](*n, a, *inca, b, *incb, c, *ldc, alpha); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if ISCOMPLEX | 
|  |  | 
|  | #endif // ISCOMPLEX |