|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename ArrayType> void array(const ArrayType& m) | 
|  | { | 
|  | typedef typename ArrayType::Index Index; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; | 
|  | typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2 = ArrayType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  |  | 
|  | ColVectorType cv1 = ColVectorType::Random(rows); | 
|  | RowVectorType rv1 = RowVectorType::Random(cols); | 
|  |  | 
|  | Scalar  s1 = ei_random<Scalar>(), | 
|  | s2 = ei_random<Scalar>(); | 
|  |  | 
|  | // scalar addition | 
|  | VERIFY_IS_APPROX(m1 + s1, s1 + m1); | 
|  | VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); | 
|  | VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); | 
|  | VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); | 
|  | VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); | 
|  | VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); | 
|  | m3 = m1; | 
|  | m3 += s2; | 
|  | VERIFY_IS_APPROX(m3, m1 + s2); | 
|  | m3 = m1; | 
|  | m3 -= s1; | 
|  | VERIFY_IS_APPROX(m3, m1 - s1); | 
|  |  | 
|  | // reductions | 
|  | VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); | 
|  | VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); | 
|  | if (!ei_isApprox(m1.sum(), (m1+m2).sum())) | 
|  | VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); | 
|  | VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op<Scalar>())); | 
|  |  | 
|  | // vector-wise ops | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | 
|  | m3 = m1; | 
|  | VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void comparisons(const ArrayType& m) | 
|  | { | 
|  | typedef typename ArrayType::Index Index; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | Index r = ei_random<Index>(0, rows-1), | 
|  | c = ei_random<Index>(0, cols-1); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2 = ArrayType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  |  | 
|  | VERIFY(((m1 + Scalar(1)) > m1).all()); | 
|  | VERIFY(((m1 - Scalar(1)) < m1).all()); | 
|  | if (rows*cols>1) | 
|  | { | 
|  | m3 = m1; | 
|  | m3(r,c) += 1; | 
|  | VERIFY(! (m1 < m3).all() ); | 
|  | VERIFY(! (m1 > m3).all() ); | 
|  | } | 
|  |  | 
|  | // comparisons to scalar | 
|  | VERIFY( (m1 != (m1(r,c)+1) ).any() ); | 
|  | VERIFY( (m1 > (m1(r,c)-1) ).any() ); | 
|  | VERIFY( (m1 < (m1(r,c)+1) ).any() ); | 
|  | VERIFY( (m1 == m1(r,c) ).any() ); | 
|  |  | 
|  | // test Select | 
|  | VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) ); | 
|  | VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) ); | 
|  | Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); | 
|  | for (int j=0; j<cols; ++j) | 
|  | for (int i=0; i<rows; ++i) | 
|  | m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j); | 
|  | VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) | 
|  | .select(ArrayType::Zero(rows,cols),m1), m3); | 
|  | // shorter versions: | 
|  | VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) | 
|  | .select(0,m1), m3); | 
|  | VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid)) | 
|  | .select(m1,0), m3); | 
|  | // even shorter version: | 
|  | VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3); | 
|  |  | 
|  | // count | 
|  | VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols); | 
|  |  | 
|  | typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices; | 
|  |  | 
|  | // TODO allows colwise/rowwise for array | 
|  | VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); | 
|  | VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); | 
|  | } | 
|  |  | 
|  | template<typename ArrayType> void array_real(const ArrayType& m) | 
|  | { | 
|  | typedef typename ArrayType::Index Index; | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), | 
|  | m2 = ArrayType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.sin(), std::sin(m1)); | 
|  | VERIFY_IS_APPROX(m1.sin(), ei_sin(m1)); | 
|  | VERIFY_IS_APPROX(m1.cos(), std::cos(m1)); | 
|  | VERIFY_IS_APPROX(m1.cos(), ei_cos(m1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(ei_cos(m1+RealScalar(3)*m2), ei_cos((m1+RealScalar(3)*m2).eval())); | 
|  | VERIFY_IS_APPROX(std::cos(m1+RealScalar(3)*m2), std::cos((m1+RealScalar(3)*m2).eval())); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.abs().sqrt(), std::sqrt(std::abs(m1))); | 
|  | VERIFY_IS_APPROX(m1.abs().sqrt(), ei_sqrt(ei_abs(m1))); | 
|  | VERIFY_IS_APPROX(m1.abs(), ei_sqrt(ei_abs2(m1))); | 
|  |  | 
|  | VERIFY_IS_APPROX(ei_abs2(ei_real(m1)) + ei_abs2(ei_imag(m1)), ei_abs2(m1)); | 
|  | VERIFY_IS_APPROX(ei_abs2(std::real(m1)) + ei_abs2(std::imag(m1)), ei_abs2(m1)); | 
|  | if(!NumTraits<Scalar>::IsComplex) | 
|  | VERIFY_IS_APPROX(ei_real(m1), m1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.abs().log(), std::log(std::abs(m1))); | 
|  | VERIFY_IS_APPROX(m1.abs().log(), ei_log(ei_abs(m1))); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.exp(), std::exp(m1)); | 
|  | VERIFY_IS_APPROX(m1.exp() * m2.exp(), std::exp(m1+m2)); | 
|  | VERIFY_IS_APPROX(m1.exp(), ei_exp(m1)); | 
|  | VERIFY_IS_APPROX(m1.exp() / m2.exp(), std::exp(m1-m2)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.pow(2), m1.square()); | 
|  | VERIFY_IS_APPROX(std::pow(m1,2), m1.square()); | 
|  | m3 = m1.abs(); | 
|  | VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); | 
|  | VERIFY_IS_APPROX(std::pow(m3,RealScalar(0.5)), m3.sqrt()); | 
|  | } | 
|  |  | 
|  | void test_array() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( array(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( array(Array22f()) ); | 
|  | CALL_SUBTEST_3( array(Array44d()) ); | 
|  | CALL_SUBTEST_4( array(ArrayXXcf(3, 3)) ); | 
|  | CALL_SUBTEST_5( array(ArrayXXf(8, 12)) ); | 
|  | CALL_SUBTEST_6( array(ArrayXXi(8, 12)) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( comparisons(Array22f()) ); | 
|  | CALL_SUBTEST_3( comparisons(Array44d()) ); | 
|  | CALL_SUBTEST_5( comparisons(ArrayXXf(8, 12)) ); | 
|  | CALL_SUBTEST_6( comparisons(ArrayXXi(8, 12)) ); | 
|  | } | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( array_real(Array22f()) ); | 
|  | CALL_SUBTEST_3( array_real(Array44d()) ); | 
|  | CALL_SUBTEST_5( array_real(ArrayXXf(8, 12)) ); | 
|  | } | 
|  |  | 
|  | VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<int>::type, int >::ret)); | 
|  | VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<float>::type, float >::ret)); | 
|  | VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::ret)); | 
|  | typedef CwiseUnaryOp<ei_scalar_sum_op<double>, ArrayXd > Xpr; | 
|  | VERIFY((ei_is_same_type< ei_global_math_functions_filtering_base<Xpr>::type, | 
|  | ArrayBase<Xpr> | 
|  | >::ret)); | 
|  | } |