| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #define EIGEN2_SUPPORT | 
 | #define EIGEN_NO_STATIC_ASSERT | 
 | #include "main.h" | 
 | #include <functional> | 
 |  | 
 | using namespace std; | 
 |  | 
 | template<typename Scalar> struct AddIfNull { | 
 |     const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} | 
 |     enum { Cost = NumTraits<Scalar>::AddCost }; | 
 | }; | 
 |  | 
 | template<typename MatrixType> void cwiseops(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols), | 
 |              m4(rows, cols), | 
 |              mzero = MatrixType::Zero(rows, cols), | 
 |              mones = MatrixType::Ones(rows, cols), | 
 |              identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> | 
 |                               ::Identity(rows, rows), | 
 |              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); | 
 |   VectorType v1 = VectorType::Random(rows), | 
 |              v2 = VectorType::Random(rows), | 
 |              vzero = VectorType::Zero(rows), | 
 |              vones = VectorType::Ones(rows), | 
 |              v3(rows); | 
 |  | 
 |   Index r = ei_random<Index>(0, rows-1), | 
 |         c = ei_random<Index>(0, cols-1); | 
 |  | 
 |   Scalar s1 = ei_random<Scalar>(); | 
 |  | 
 |   // test Zero, Ones, Constant, and the set* variants | 
 |   m3 = MatrixType::Constant(rows, cols, s1); | 
 |   for (int j=0; j<cols; ++j) | 
 |     for (int i=0; i<rows; ++i) | 
 |     { | 
 |       VERIFY_IS_APPROX(mzero(i,j), Scalar(0)); | 
 |       VERIFY_IS_APPROX(mones(i,j), Scalar(1)); | 
 |       VERIFY_IS_APPROX(m3(i,j), s1); | 
 |     } | 
 |   VERIFY(mzero.isZero()); | 
 |   VERIFY(mones.isOnes()); | 
 |   VERIFY(m3.isConstant(s1)); | 
 |   VERIFY(identity.isIdentity()); | 
 |   VERIFY_IS_APPROX(m4.setConstant(s1), m3); | 
 |   VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3); | 
 |   VERIFY_IS_APPROX(m4.setZero(), mzero); | 
 |   VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero); | 
 |   VERIFY_IS_APPROX(m4.setOnes(), mones); | 
 |   VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones); | 
 |   m4.fill(s1); | 
 |   VERIFY_IS_APPROX(m4, m3); | 
 |  | 
 |   VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1)); | 
 |   VERIFY_IS_APPROX(v3.setZero(rows), vzero); | 
 |   VERIFY_IS_APPROX(v3.setOnes(rows), vones); | 
 |  | 
 |   m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); | 
 |  | 
 |   VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); | 
 |   VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); | 
 |   VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); | 
 |  | 
 |   VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); | 
 |   VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); | 
 |   m3 = m1; m3.cwise() += 1; | 
 |   VERIFY_IS_APPROX(m1 + mones, m3); | 
 |   m3 = m1; m3.cwise() -= 1; | 
 |   VERIFY_IS_APPROX(m1 - mones, m3); | 
 |  | 
 |   VERIFY_IS_APPROX(m2, m2.cwise() * mones); | 
 |   VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1); | 
 |   m3 = m1; | 
 |   m3.cwise() *= m2; | 
 |   VERIFY_IS_APPROX(m3, m1.cwise() * m2); | 
 |  | 
 |   VERIFY_IS_APPROX(mones,    m2.cwise()/m2); | 
 |   if(!NumTraits<Scalar>::IsInteger) | 
 |   { | 
 |     VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse())); | 
 |     m3 = m1.cwise().abs().cwise().sqrt(); | 
 |     VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); | 
 |     VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); | 
 |     VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); | 
 |  | 
 |     VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); | 
 |     m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); | 
 |     VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); | 
 |     m3 = m1.cwise().abs(); | 
 |     VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); | 
 |  | 
 | //     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); | 
 |     VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); | 
 |     m3 = m1; | 
 |     m3.cwise() /= m2; | 
 |     VERIFY_IS_APPROX(m3, m1.cwise() / m2); | 
 |   } | 
 |  | 
 |   // check min | 
 |   VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); | 
 |   VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); | 
 |   VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); | 
 |  | 
 |   // check max | 
 |   VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); | 
 |   VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); | 
 |   VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); | 
 |  | 
 |   VERIFY( (m1.cwise() == m1).all() ); | 
 |   VERIFY( (m1.cwise() != m2).any() ); | 
 |   VERIFY(!(m1.cwise() == (m1+mones)).any() ); | 
 |   if (rows*cols>1) | 
 |   { | 
 |     m3 = m1; | 
 |     m3(r,c) += 1; | 
 |     VERIFY( (m1.cwise() == m3).any() ); | 
 |     VERIFY( !(m1.cwise() == m3).all() ); | 
 |   } | 
 |   VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); | 
 |   VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); | 
 |   VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); | 
 |   VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); | 
 |  | 
 |   VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); | 
 |   VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); | 
 |   VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); | 
 | } | 
 |  | 
 | void test_cwiseop() | 
 | { | 
 |   for(int i = 0; i < g_repeat ; i++) { | 
 |     CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( cwiseops(Matrix4d()) ); | 
 |     CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) ); | 
 |     CALL_SUBTEST_4( cwiseops(MatrixXf(22, 22)) ); | 
 |     CALL_SUBTEST_5( cwiseops(MatrixXi(8, 12)) ); | 
 |     CALL_SUBTEST_6( cwiseops(MatrixXd(20, 20)) ); | 
 |   } | 
 | } |