| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <Eigen/Eigenvalues> | 
 |  | 
 | #ifdef HAS_GSL | 
 | #include "gsl_helper.h" | 
 | #endif | 
 |  | 
 | template<typename MatrixType> void eigensolver(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   /* this test covers the following files: | 
 |      EigenSolver.h | 
 |   */ | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
 |   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | 
 |   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows,cols); | 
 |   MatrixType a1 = MatrixType::Random(rows,cols); | 
 |   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | 
 |  | 
 |   EigenSolver<MatrixType> ei0(symmA); | 
 |   VERIFY_IS_EQUAL(ei0.info(), Success); | 
 |   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); | 
 |   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), | 
 |     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); | 
 |  | 
 |   EigenSolver<MatrixType> ei1(a); | 
 |   VERIFY_IS_EQUAL(ei1.info(), Success); | 
 |   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); | 
 |   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), | 
 |                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | 
 |   VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); | 
 |  | 
 |   EigenSolver<MatrixType> eiNoEivecs(a, false); | 
 |   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | 
 |   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | 
 |   VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); | 
 |  | 
 |   MatrixType id = MatrixType::Identity(rows, cols); | 
 |   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | 
 |  | 
 |   if (rows > 2) | 
 |   { | 
 |     // Test matrix with NaN | 
 |     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
 |     EigenSolver<MatrixType> eiNaN(a); | 
 |     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) | 
 | { | 
 |   EigenSolver<MatrixType> eig; | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
 |  | 
 |   MatrixType a = MatrixType::Random(m.rows(),m.cols()); | 
 |   eig.compute(a, false); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | 
 | } | 
 |  | 
 | void test_eigensolver_generic() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( eigensolver(Matrix4f()) ); | 
 |     CALL_SUBTEST_2( eigensolver(MatrixXd(17,17)) ); | 
 |  | 
 |     // some trivial but implementation-wise tricky cases | 
 |     CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); | 
 |     CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); | 
 |     CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); | 
 |     CALL_SUBTEST_4( eigensolver(Matrix2d()) ); | 
 |   } | 
 |  | 
 |   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); | 
 |   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(17,17)) ); | 
 |   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); | 
 |   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_5(EigenSolver<MatrixXf>(10)); | 
 | } |