|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  |  | 
|  | #ifdef HAS_GSL | 
|  | #include "gsl_helper.h" | 
|  | #endif | 
|  |  | 
|  | template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | /* this test covers the following files: | 
|  | EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | 
|  | typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; | 
|  |  | 
|  | RealScalar largerEps = 10*test_precision<RealScalar>(); | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows,cols); | 
|  | MatrixType a1 = MatrixType::Random(rows,cols); | 
|  | MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | 
|  | symmA.template triangularView<StrictlyUpper>().setZero(); | 
|  |  | 
|  | MatrixType b = MatrixType::Random(rows,cols); | 
|  | MatrixType b1 = MatrixType::Random(rows,cols); | 
|  | MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; | 
|  | symmB.template triangularView<StrictlyUpper>().setZero(); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); | 
|  | // generalized eigen pb | 
|  | GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB); | 
|  |  | 
|  | #ifdef HAS_GSL | 
|  | if (ei_is_same_type<RealScalar,double>::ret) | 
|  | { | 
|  | // restore symmA and symmB. | 
|  | symmA = MatrixType(symmA.template selfadjointView<Lower>()); | 
|  | symmB = MatrixType(symmB.template selfadjointView<Lower>()); | 
|  | typedef GslTraits<Scalar> Gsl; | 
|  | typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; | 
|  | typename GslTraits<RealScalar>::Vector gEval=0; | 
|  | RealVectorType _eval; | 
|  | MatrixType _evec; | 
|  | convert<MatrixType>(symmA, gSymmA); | 
|  | convert<MatrixType>(symmB, gSymmB); | 
|  | convert<MatrixType>(symmA, gEvec); | 
|  | gEval = GslTraits<RealScalar>::createVector(rows); | 
|  |  | 
|  | Gsl::eigen_symm(gSymmA, gEval, gEvec); | 
|  | convert(gEval, _eval); | 
|  | convert(gEvec, _evec); | 
|  |  | 
|  | // test gsl itself ! | 
|  | VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); | 
|  |  | 
|  | // compare with eigen | 
|  | VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); | 
|  | VERIFY_IS_APPROX(_evec.cwiseAbs(), eiSymm.eigenvectors().cwiseAbs()); | 
|  |  | 
|  | // generalized pb | 
|  | Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); | 
|  | convert(gEval, _eval); | 
|  | convert(gEvec, _evec); | 
|  | // test GSL itself: | 
|  | VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); | 
|  |  | 
|  | // compare with eigen | 
|  | MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); | 
|  | VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); | 
|  | VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs()); | 
|  |  | 
|  | Gsl::free(gSymmA); | 
|  | Gsl::free(gSymmB); | 
|  | GslTraits<RealScalar>::free(gEval); | 
|  | Gsl::free(gEvec); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | VERIFY_IS_EQUAL(eiSymm.info(), Success); | 
|  | VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox( | 
|  | eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); | 
|  | VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); | 
|  | VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); | 
|  | VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); | 
|  |  | 
|  | // generalized eigen problem Ax = lBx | 
|  | eiSymmGen.compute(symmA, symmB,Ax_lBx); | 
|  | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); | 
|  | VERIFY((symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( | 
|  | symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | 
|  |  | 
|  | // generalized eigen problem BAx = lx | 
|  | eiSymmGen.compute(symmA, symmB,BAx_lx); | 
|  | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); | 
|  | VERIFY((symmB.template selfadjointView<Lower>() * (symmA.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( | 
|  | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | 
|  |  | 
|  | // generalized eigen problem ABx = lx | 
|  | eiSymmGen.compute(symmA, symmB,ABx_lx); | 
|  | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); | 
|  | VERIFY((symmA.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( | 
|  | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | 
|  |  | 
|  |  | 
|  | MatrixType sqrtSymmA = eiSymm.operatorSqrt(); | 
|  | VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); | 
|  | VERIFY_IS_APPROX(sqrtSymmA, symmA.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); | 
|  |  | 
|  | MatrixType id = MatrixType::Identity(rows, cols); | 
|  | VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); | 
|  |  | 
|  | eiSymmUninitialized.compute(symmA, false); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); | 
|  |  | 
|  | if (rows > 1) | 
|  | { | 
|  | // Test matrix with NaN | 
|  | symmA(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmA); | 
|  | VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_eigensolver_selfadjoint() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | // very important to test a 3x3 matrix since we provide a special path for it | 
|  | CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); | 
|  | CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); | 
|  | CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(10,10)) ); | 
|  | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(19,19)) ); | 
|  | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(17,17)) ); | 
|  |  | 
|  | // some trivial but implementation-wise tricky cases | 
|  | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) ); | 
|  | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) ); | 
|  | CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) ); | 
|  | CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) ); | 
|  | } | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf>(10)); | 
|  | CALL_SUBTEST_8(Tridiagonalization<MatrixXf>(10)); | 
|  | } | 
|  |  |