|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | /* this test covers the following files: | 
|  | Geometry/OrthoMethods.h | 
|  | */ | 
|  |  | 
|  | template<typename Scalar> void orthomethods_3() | 
|  | { | 
|  | typedef Matrix<Scalar,3,3> Matrix3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  |  | 
|  | typedef Matrix<Scalar,4,1> Vector4; | 
|  |  | 
|  | Vector3 v0 = Vector3::Random(), | 
|  | v1 = Vector3::Random(), | 
|  | v2 = Vector3::Random(); | 
|  |  | 
|  | // cross product | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); | 
|  | Matrix3 mat3; | 
|  | mat3 << v0.normalized(), | 
|  | (v0.cross(v1)).normalized(), | 
|  | (v0.cross(v1).cross(v0)).normalized(); | 
|  | VERIFY(mat3.isUnitary()); | 
|  |  | 
|  |  | 
|  | // colwise/rowwise cross product | 
|  | mat3.setRandom(); | 
|  | Vector3 vec3 = Vector3::Random(); | 
|  | Matrix3 mcross; | 
|  | int i = ei_random<int>(0,2); | 
|  | mcross = mat3.colwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); | 
|  | mcross = mat3.rowwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); | 
|  |  | 
|  | // cross3 | 
|  | Vector4 v40 = Vector4::Random(), | 
|  | v41 = Vector4::Random(), | 
|  | v42 = Vector4::Random(); | 
|  | v40.w() = v41.w() = v42.w() = 0; | 
|  | v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>()); | 
|  | VERIFY_IS_APPROX(v40.cross3(v41), v42); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Size> void orthomethods(int size=Size) | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar,Size,1> VectorType; | 
|  | typedef Matrix<Scalar,3,Size> Matrix3N; | 
|  | typedef Matrix<Scalar,Size,3> MatrixN3; | 
|  | typedef Matrix<Scalar,3,1> Vector3; | 
|  |  | 
|  | VectorType v0 = VectorType::Random(size), | 
|  | v1 = VectorType::Random(size), | 
|  | v2 = VectorType::Random(size); | 
|  |  | 
|  | // unitOrthogonal | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); | 
|  | VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); | 
|  |  | 
|  | if (size>=3) | 
|  | { | 
|  | v0.template head<2>().setZero(); | 
|  | v0.tail(size-2).setRandom(); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); | 
|  | VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); | 
|  | } | 
|  |  | 
|  | // colwise/rowwise cross product | 
|  | Vector3 vec3 = Vector3::Random(); | 
|  | int i = ei_random<int>(0,size-1); | 
|  |  | 
|  | Matrix3N mat3N(3,size), mcross3N(3,size); | 
|  | mat3N.setRandom(); | 
|  | mcross3N = mat3N.colwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3)); | 
|  |  | 
|  | MatrixN3 matN3(size,3), mcrossN3(size,3); | 
|  | matN3.setRandom(); | 
|  | mcrossN3 = matN3.rowwise().cross(vec3); | 
|  | VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3)); | 
|  | } | 
|  |  | 
|  | void test_geo_orthomethods() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( orthomethods_3<float>() ); | 
|  | CALL_SUBTEST_2( orthomethods_3<double>() ); | 
|  | CALL_SUBTEST_1( (orthomethods<float,2>()) ); | 
|  | CALL_SUBTEST_2( (orthomethods<double,2>()) ); | 
|  | CALL_SUBTEST_1( (orthomethods<float,3>()) ); | 
|  | CALL_SUBTEST_2( (orthomethods<double,3>()) ); | 
|  | CALL_SUBTEST_3( (orthomethods<float,7>()) ); | 
|  | CALL_SUBTEST_4( (orthomethods<std::complex<double>,8>()) ); | 
|  | CALL_SUBTEST_5( (orthomethods<float,Dynamic>(36)) ); | 
|  | CALL_SUBTEST_6( (orthomethods<double,Dynamic>(35)) ); | 
|  | } | 
|  | } |