|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LU> | 
|  |  | 
|  | template<typename MatrixType> void inverse(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | /* this test covers the following files: | 
|  | Inverse.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | MatrixType m1(rows, cols), | 
|  | m2(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | identity = MatrixType::Identity(rows, rows); | 
|  | createRandomPIMatrixOfRank(rows,rows,rows,m1); | 
|  | m2 = m1.inverse(); | 
|  | VERIFY_IS_APPROX(m1, m2.inverse() ); | 
|  |  | 
|  | VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); | 
|  |  | 
|  | VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); | 
|  | VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); | 
|  |  | 
|  | // since for the general case we implement separately row-major and col-major, test that | 
|  | VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); | 
|  |  | 
|  | #if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6) | 
|  | //computeInverseAndDetWithCheck tests | 
|  | //First: an invertible matrix | 
|  | bool invertible; | 
|  | RealScalar det; | 
|  |  | 
|  | m2.setZero(); | 
|  | m1.computeInverseAndDetWithCheck(m2, det, invertible); | 
|  | VERIFY(invertible); | 
|  | VERIFY_IS_APPROX(identity, m1*m2); | 
|  | VERIFY_IS_APPROX(det, m1.determinant()); | 
|  |  | 
|  | m2.setZero(); | 
|  | m1.computeInverseWithCheck(m2, invertible); | 
|  | VERIFY(invertible); | 
|  | VERIFY_IS_APPROX(identity, m1*m2); | 
|  |  | 
|  | //Second: a rank one matrix (not invertible, except for 1x1 matrices) | 
|  | VectorType v3 = VectorType::Random(rows); | 
|  | MatrixType m3 = v3*v3.transpose(), m4(rows,cols); | 
|  | m3.computeInverseAndDetWithCheck(m4, det, invertible); | 
|  | VERIFY( rows==1 ? invertible : !invertible ); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(det-m3.determinant()), RealScalar(1)); | 
|  | m3.computeInverseWithCheck(m4, invertible); | 
|  | VERIFY( rows==1 ? invertible : !invertible ); | 
|  | #endif | 
|  |  | 
|  | // check in-place inversion | 
|  | if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4) | 
|  | { | 
|  | // in-place is forbidden | 
|  | VERIFY_RAISES_ASSERT(m1 = m1.inverse()); | 
|  | } | 
|  | else | 
|  | { | 
|  | m2 = m1.inverse(); | 
|  | m1 = m1.inverse(); | 
|  | VERIFY_IS_APPROX(m1,m2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_inverse() | 
|  | { | 
|  | int s; | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) ); | 
|  | CALL_SUBTEST_2( inverse(Matrix2d()) ); | 
|  | CALL_SUBTEST_3( inverse(Matrix3f()) ); | 
|  | CALL_SUBTEST_4( inverse(Matrix4f()) ); | 
|  | s = ei_random<int>(50,320); | 
|  | CALL_SUBTEST_5( inverse(MatrixXf(s,s)) ); | 
|  | s = ei_random<int>(25,100); | 
|  | CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) ); | 
|  | CALL_SUBTEST_7( inverse(Matrix4d()) ); | 
|  | } | 
|  | } |