| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/SVD> | 
 | #include <Eigen/LU> | 
 |  | 
 | template<typename MatrixType, unsigned int Options> void svd(const MatrixType& m = MatrixType(), bool pickrandom = true) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
 |   }; | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; | 
 |   typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType; | 
 |  | 
 |   MatrixType a; | 
 |   if(pickrandom) a = MatrixType::Random(rows,cols); | 
 |   else a = m; | 
 |  | 
 |   JacobiSVD<MatrixType,Options> svd(a); | 
 |   MatrixType sigma = MatrixType::Zero(rows,cols); | 
 |   sigma.diagonal() = svd.singularValues().template cast<Scalar>(); | 
 |   MatrixUType u = svd.matrixU(); | 
 |   MatrixVType v = svd.matrixV(); | 
 |  | 
 |   //std::cout << "a\n" << a << std::endl; | 
 |   //std::cout << "b\n" << u * sigma * v.adjoint() << std::endl; | 
 |    | 
 |   VERIFY_IS_APPROX(a, u * sigma * v.adjoint()); | 
 |   VERIFY_IS_UNITARY(u); | 
 |   VERIFY_IS_UNITARY(v); | 
 | } | 
 |  | 
 | template<typename MatrixType> void svd_verify_assert() | 
 | { | 
 |   MatrixType tmp; | 
 |  | 
 |   SVD<MatrixType> svd; | 
 |   //VERIFY_RAISES_ASSERT(svd.solve(tmp, &tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.matrixU()) | 
 |   VERIFY_RAISES_ASSERT(svd.singularValues()) | 
 |   VERIFY_RAISES_ASSERT(svd.matrixV()) | 
 |   /*VERIFY_RAISES_ASSERT(svd.computeUnitaryPositive(&tmp,&tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.computePositiveUnitary(&tmp,&tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.computeRotationScaling(&tmp,&tmp)) | 
 |   VERIFY_RAISES_ASSERT(svd.computeScalingRotation(&tmp,&tmp))*/ | 
 | } | 
 |  | 
 | void test_jacobisvd() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     Matrix2cd m; | 
 |     m << 0, 1, | 
 |          0, 1; | 
 |     CALL_SUBTEST_1(( svd<Matrix2cd,0>(m, false) )); | 
 |     m << 1, 0, | 
 |          1, 0; | 
 |     CALL_SUBTEST_1(( svd<Matrix2cd,0>(m, false) )); | 
 |     Matrix2d n; | 
 |     n << 1, 1, | 
 |          1, -1; | 
 |     CALL_SUBTEST_2(( svd<Matrix2d,0>(n, false) )); | 
 |     CALL_SUBTEST_3(( svd<Matrix3f,0>() )); | 
 |     CALL_SUBTEST_4(( svd<Matrix4d,Square>() )); | 
 |     CALL_SUBTEST_5(( svd<Matrix<float,3,5> , AtLeastAsManyColsAsRows>() )); | 
 |     CALL_SUBTEST_6(( svd<Matrix<double,Dynamic,2> , AtLeastAsManyRowsAsCols>(Matrix<double,Dynamic,2>(10,2)) )); | 
 |  | 
 |     CALL_SUBTEST_7(( svd<MatrixXf,Square>(MatrixXf(50,50)) )); | 
 |     CALL_SUBTEST_8(( svd<MatrixXcd,AtLeastAsManyRowsAsCols>(MatrixXcd(14,7)) )); | 
 |   } | 
 |   CALL_SUBTEST_9(( svd<MatrixXf,0>(MatrixXf(300,200)) )); | 
 |   CALL_SUBTEST_10(( svd<MatrixXcd,AtLeastAsManyColsAsRows>(MatrixXcd(100,150)) )); | 
 |  | 
 |   CALL_SUBTEST_3(( svd_verify_assert<Matrix3f>() )); | 
 |   CALL_SUBTEST_3(( svd_verify_assert<Matrix3d>() )); | 
 |   CALL_SUBTEST_9(( svd_verify_assert<MatrixXf>() )); | 
 |   CALL_SUBTEST_11(( svd_verify_assert<MatrixXd>() )); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_12( JacobiSVD<MatrixXf>(10, 20) ); | 
 | } |