|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE.f See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template<typename Derived1, typename Derived2> | 
|  | bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) | 
|  | { | 
|  | return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon | 
|  | * std::max(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff())); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void product(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Identity.h Product.h | 
|  | */ | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, | 
|  | MatrixType::Flags&RowMajorBit> OtherMajorMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols); | 
|  | RowSquareMatrixType | 
|  | identity = RowSquareMatrixType::Identity(rows, rows), | 
|  | square = RowSquareMatrixType::Random(rows, rows), | 
|  | res = RowSquareMatrixType::Random(rows, rows); | 
|  | ColSquareMatrixType | 
|  | square2 = ColSquareMatrixType::Random(cols, cols), | 
|  | res2 = ColSquareMatrixType::Random(cols, cols); | 
|  | RowVectorType v1 = RowVectorType::Random(rows), | 
|  | v2 = RowVectorType::Random(rows), | 
|  | vzero = RowVectorType::Zero(rows); | 
|  | ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
|  | OtherMajorMatrixType tm1 = m1; | 
|  |  | 
|  | Scalar s1 = ei_random<Scalar>(); | 
|  |  | 
|  | Index r  = ei_random<Index>(0, rows-1), | 
|  | c  = ei_random<Index>(0, cols-1), | 
|  | c2 = ei_random<Index>(0, cols-1); | 
|  |  | 
|  | // begin testing Product.h: only associativity for now | 
|  | // (we use Transpose.h but this doesn't count as a test for it) | 
|  | VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | 
|  | m3 = m1; | 
|  | m3 *= m1.transpose() * m2; | 
|  | VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | 
|  | VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | 
|  |  | 
|  | // continue testing Product.h: distributivity | 
|  | VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2); | 
|  | VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2); | 
|  |  | 
|  | // continue testing Product.h: compatibility with ScalarMultiple.h | 
|  | VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1); | 
|  | VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1)); | 
|  |  | 
|  | // test Product.h together with Identity.h | 
|  | VERIFY_IS_APPROX(v1,                      identity*v1); | 
|  | VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity); | 
|  | // again, test operator() to check const-qualification | 
|  | VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); | 
|  |  | 
|  | if (rows!=cols) | 
|  | VERIFY_RAISES_ASSERT(m3 = m1*m1); | 
|  |  | 
|  | // test the previous tests were not screwed up because operator* returns 0 | 
|  | // (we use the more accurate default epsilon) | 
|  | if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); | 
|  | } | 
|  |  | 
|  | // test optimized operator+= path | 
|  | res = square; | 
|  | res.noalias() += m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  | if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(res,square + m2 * m1.transpose())); | 
|  | } | 
|  | vcres = vc2; | 
|  | vcres.noalias() += m1.transpose() * v1; | 
|  | VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); | 
|  |  | 
|  | // test optimized operator-= path | 
|  | res = square; | 
|  | res.noalias() -= m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - (m1 * m2.transpose())); | 
|  | if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(res,square - m2 * m1.transpose())); | 
|  | } | 
|  | vcres = vc2; | 
|  | vcres.noalias() -= m1.transpose() * v1; | 
|  | VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1); | 
|  |  | 
|  | tm1 = m1; | 
|  | VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); | 
|  | VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); | 
|  |  | 
|  | // test submatrix and matrix/vector product | 
|  | for (int i=0; i<rows; ++i) | 
|  | res.row(i) = m1.row(i) * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
|  | // the other way round: | 
|  | for (int i=0; i<rows; ++i) | 
|  | res.col(i) = m1 * m2.transpose().col(i); | 
|  | VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
|  |  | 
|  | res2 = square2; | 
|  | res2.noalias() += m1.transpose() * m2; | 
|  | VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); | 
|  | if (!NumTraits<Scalar>::IsInteger && std::min(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); | 
|  | } | 
|  |  | 
|  | // inner product | 
|  | Scalar x = square2.row(c) * square2.col(c2); | 
|  | VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum()); | 
|  | } |