|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "sparse.h" | 
|  |  | 
|  | template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) | 
|  | { | 
|  | typedef typename SparseMatrixType::Index Index; | 
|  |  | 
|  | const Index rows = ref.rows(); | 
|  | const Index cols = ref.cols(); | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | enum { Flags = SparseMatrixType::Flags }; | 
|  |  | 
|  | double density = std::max(8./(rows*cols), 0.01); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | Scalar eps = 1e-6; | 
|  |  | 
|  | SparseMatrixType m(rows, cols); | 
|  | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | 
|  | DenseVector vec1 = DenseVector::Random(rows); | 
|  | Scalar s1 = ei_random<Scalar>(); | 
|  |  | 
|  | std::vector<Vector2i> zeroCoords; | 
|  | std::vector<Vector2i> nonzeroCoords; | 
|  | initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | 
|  |  | 
|  | if (zeroCoords.size()==0 || nonzeroCoords.size()==0) | 
|  | return; | 
|  |  | 
|  | // test coeff and coeffRef | 
|  | for (int i=0; i<(int)zeroCoords.size(); ++i) | 
|  | { | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | 
|  | if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) | 
|  | VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); | 
|  | } | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | 
|  | refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | 
|  |  | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  | /* | 
|  | // test InnerIterators and Block expressions | 
|  | for (int t=0; t<10; ++t) | 
|  | { | 
|  | int j = ei_random<int>(0,cols-1); | 
|  | int i = ei_random<int>(0,rows-1); | 
|  | int w = ei_random<int>(1,cols-j-1); | 
|  | int h = ei_random<int>(1,rows-i-1); | 
|  |  | 
|  | //     VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); | 
|  | for(int c=0; c<w; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); | 
|  | for(int r=0; r<h; r++) | 
|  | { | 
|  | //         VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); | 
|  | } | 
|  | } | 
|  | //     for(int r=0; r<h; r++) | 
|  | //     { | 
|  | //       VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); | 
|  | //       for(int c=0; c<w; c++) | 
|  | //       { | 
|  | //         VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); | 
|  | //       } | 
|  | //     } | 
|  | } | 
|  |  | 
|  | for(int c=0; c<cols; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); | 
|  | VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); | 
|  | } | 
|  |  | 
|  | for(int r=0; r<rows; r++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); | 
|  | VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); | 
|  | } | 
|  | */ | 
|  |  | 
|  | // test insert (inner random) | 
|  | { | 
|  | DenseMatrix m1(rows,cols); | 
|  | m1.setZero(); | 
|  | SparseMatrixType m2(rows,cols); | 
|  | m2.reserve(10); | 
|  | for (int j=0; j<cols; ++j) | 
|  | { | 
|  | for (int k=0; k<rows/2; ++k) | 
|  | { | 
|  | int i = ei_random<int>(0,rows-1); | 
|  | if (m1.coeff(i,j)==Scalar(0)) | 
|  | m2.insert(i,j) = m1(i,j) = ei_random<Scalar>(); | 
|  | } | 
|  | } | 
|  | m2.finalize(); | 
|  | VERIFY_IS_APPROX(m2,m1); | 
|  | } | 
|  |  | 
|  | // test insert (fully random) | 
|  | { | 
|  | DenseMatrix m1(rows,cols); | 
|  | m1.setZero(); | 
|  | SparseMatrixType m2(rows,cols); | 
|  | m2.reserve(10); | 
|  | for (int k=0; k<rows*cols; ++k) | 
|  | { | 
|  | int i = ei_random<int>(0,rows-1); | 
|  | int j = ei_random<int>(0,cols-1); | 
|  | if (m1.coeff(i,j)==Scalar(0)) | 
|  | m2.insert(i,j) = m1(i,j) = ei_random<Scalar>(); | 
|  | } | 
|  | m2.finalize(); | 
|  | VERIFY_IS_APPROX(m2,m1); | 
|  | } | 
|  |  | 
|  | // test basic computations | 
|  | { | 
|  | DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType m1(rows, rows); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | SparseMatrixType m3(rows, rows); | 
|  | SparseMatrixType m4(rows, rows); | 
|  | initSparse<Scalar>(density, refM1, m1); | 
|  | initSparse<Scalar>(density, refM2, m2); | 
|  | initSparse<Scalar>(density, refM3, m3); | 
|  | initSparse<Scalar>(density, refM4, m4); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1+m2, refM1+refM2); | 
|  | VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); | 
|  | VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); | 
|  | VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1*=s1, refM1*=s1); | 
|  | VERIFY_IS_APPROX(m1/=s1, refM1/=s1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); | 
|  | VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); | 
|  |  | 
|  | refM4.setRandom(); | 
|  | // sparse cwise* dense | 
|  | VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); | 
|  | //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); | 
|  | } | 
|  |  | 
|  | // test transpose | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); | 
|  | VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); | 
|  | } | 
|  |  | 
|  | // test innerVector() | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | int j0 = ei_random(0,rows-1); | 
|  | int j1 = ei_random(0,rows-1); | 
|  | VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); | 
|  | VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); | 
|  | //m2.innerVector(j0) = 2*m2.innerVector(j1); | 
|  | //refMat2.col(j0) = 2*refMat2.col(j1); | 
|  | //VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test innerVectors() | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | int j0 = ei_random(0,rows-2); | 
|  | int j1 = ei_random(0,rows-2); | 
|  | int n0 = ei_random<int>(1,rows-std::max(j0,j1)); | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), | 
|  | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); | 
|  | //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); | 
|  | //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); | 
|  | } | 
|  |  | 
|  | // test prune | 
|  | { | 
|  | SparseMatrixType m2(rows, rows); | 
|  | DenseMatrix refM2(rows, rows); | 
|  | refM2.setZero(); | 
|  | int countFalseNonZero = 0; | 
|  | int countTrueNonZero = 0; | 
|  | for (int j=0; j<m2.outerSize(); ++j) | 
|  | { | 
|  | m2.startVec(j); | 
|  | for (int i=0; i<m2.innerSize(); ++i) | 
|  | { | 
|  | float x = ei_random<float>(0,1); | 
|  | if (x<0.1) | 
|  | { | 
|  | // do nothing | 
|  | } | 
|  | else if (x<0.5) | 
|  | { | 
|  | countFalseNonZero++; | 
|  | m2.insertBackByOuterInner(j,i) = Scalar(0); | 
|  | } | 
|  | else | 
|  | { | 
|  | countTrueNonZero++; | 
|  | m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1); | 
|  | } | 
|  | } | 
|  | } | 
|  | m2.finalize(); | 
|  | VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); | 
|  | VERIFY_IS_APPROX(m2, refM2); | 
|  | m2.prune(1); | 
|  | VERIFY(countTrueNonZero==m2.nonZeros()); | 
|  | VERIFY_IS_APPROX(m2, refM2); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_sparse_basic() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); | 
|  | CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); | 
|  | CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); | 
|  |  | 
|  | CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); | 
|  | } | 
|  | } |